1.四川大学 建筑与环境学院,四川 成都 610065
2.四川大学 碳中和未来技术学院,四川 成都 610065
3.成都达奇科技股份有限公司,四川 成都 610065
刘晓丽(1987—),博士研究生,工程师,研究方向为工业烟气污染物控制与资源化、环境催化与环境功能材料,E-mail:liuxiaolisn@163.com。
李建军(1963—),博士,教授,博士生导师,研究方向为工业烟气污染物控制与资源化、催化材料、能源回收利用及节能降碳,E-mail:jjli@scu.edu.cn。
扫 描 看 全 文
刘晓丽, 李建军, 李新. 多孔碳材料室温下催化氧化H2S的研究进展[J]. 低碳化学与化工, 2023,48(5):135-146.
LIU Xiaoli, LI Jianjun, LI Xin. Research progress on porous carbon materials for catalytic oxidation of H2S at room temperature[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):135-146.
刘晓丽, 李建军, 李新. 多孔碳材料室温下催化氧化H2S的研究进展[J]. 低碳化学与化工, 2023,48(5):135-146. DOI: 10.12434/j.issn.2097-2547.20230258.
LIU Xiaoli, LI Jianjun, LI Xin. Research progress on porous carbon materials for catalytic oxidation of H2S at room temperature[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):135-146. DOI: 10.12434/j.issn.2097-2547.20230258.
硫化氢(H,2,S)是一种剧毒和腐蚀性气体,即使是在低浓度水平下,也会对工业生产、生态环境和人类健康产生不利影响。因此,从工业气体中脱除H,2,S具有重要意义。近年来,室温下催化氧化H,2,S(简称“催化氧化H,2,S”,下同)具有成本低、脱除效率高和可回收硫资源等优点,受到了科研人员的广泛关注。多孔碳材料具有比表面积高和孔体积大的优点,适合用作催化氧化H,2,S的催化剂。首先分析了多孔碳材料催化氧化H,2,S的反应机理,然后在此基础上综述了可用于催化氧化H,2,S的多孔碳材料的研究进展,指出通过采用不同的改性方法,如杂原子掺杂、碱溶液浸渍和金属氧化物负载等可以明显提高多孔碳材料催化氧化H,2,S的性能。最后对多孔碳材料催化氧化H,2,S的研究重点和有待解决的关键科学问题进行了展望,可为该领域的未来研究提供参考。
Hydrogen sulfide (H,2,S) is a highly toxic and corrosive gas, even at low concentration levels, will have negative effects on industrial production, ecological environment and human health. Therefore, the removal of H,2,S from industrial gases is of great significance. In recent years, catalytic oxidation of H,2,S at room temperature (referred to as “catalytic oxidation of H,2,S”, the same below) have attracted extensive attention of researchers because of its low cost, high sulfur removal efficiency and the possibility of sulfur recovery. Porous carbon materials have the advantages of high specific surface area and large pore volume, and are suitable for catalytic oxidation of H,2,S. The mechanisms for catalytic oxidation of H,2,S by porous carbon materials were first discussed, and then the research progress of porous carbon materials that can be used for catalytic oxidation of H,2,S was reviewed. It is pointed out that the catalytic oxidation performance of porous carbon materials can be significantly improved by using different modification methods, such as heteroatom doping, alkaline solution impregnation and metal oxide loading. Finally, the key research points and the key scientific problems to be solved in catalytic oxidation of H,2,S by porous carbon materials were prospected, which can provide a reference for the future research of this field.
硫化氢多孔碳材料催化氧化室温
hydrogen sulfideporous carbon materialscatalytic oxidationroom temperature
HABEEB O A, KANTHASAMY R, ALI G A M, et al. Hydrogen sulfide emission sources, regulations, and removal techniques: A review [J]. Rev Chem Eng, 2018, 34: 837-854.
李松蓉, 彭璧辉, 徐少奇, 等. 堆肥过程氨气、硫化氢协同减排研究进展[J/OL]. 农业资源与环境学报: 1-17[2023-07-20]. DOI: 10.13254/j.jare.2023.0050http://dx.doi.org/10.13254/j.jare.2023.0050.
上官方钦, 干磊, 周继程, 等. 钢铁工业副产煤气资源化利用分析及案例[J]. 钢铁, 2019, 54(7): 114-120.
HERVY M, MINH D P, GÉRENTE C, et al. H2S removal from syngas using wastes pyrolysis chars [J]. Chem Eng J, 2018, 334: 2179-2189.
ZHANG Y X, ZENG W, LI Y Q. Computational study of surface orientation effect of rutile TiO2 on H2S and CO sensing mechanism [J]. Appl Surf Sci, 2019, 495: 143619.
MALONE R S L, PEARCE L L, PETERSON J. Environmental toxicology of hydrogen sulfide [J]. Nitric Oxide, 2017, 71: 1-13.
佟黎明. 低温甲醇洗技术在煤化工企业应用进展[J]. 化工管理, 2018, 494(23): 223.
SHEN F H, LIU J, ZHANG Z, et al. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon [J]. Fuel Process Technol, 2018, 171: 258-264.
KHOSHNEVISAN B, TSAPEKOS P, ALFARO N, et al. A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization [J]. Biofuel Res J, 2017, 4(4): 741-750.
LIU X, ZHANGSUN G Q, ZHENG Y, et al. Hierarchical N-doped carbons endowed with structural base sites toward highly selective adsorption and catalytic oxidation of H2S [J]. Ind Eng Chem Res, 2021, 60(5): 2101-2111.
张炫, 刘刚, 牛艳霞. 工业煤气中H2S的湿法脱硫研究进展[J]. 应用化工, 2023, 52(1): 243-248.
袁礼, 王学谦, 李翔, 等. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J/OL]. 化工进展: 1-17[2023-02-07]. DOI: 10.16085/j.issn.1000-6613.2022-2033http://dx.doi.org/10.16085/j.issn.1000-6613.2022-2033.
刘新鹏. 用于硫化氢脱除与硫资源回收的绿色脱硫新体系性能研究[D]. 济南: 山东大学, 2017.
KAPOOR R, GHOSH P, KUMAR M, et al. Evaluation of biogas upgrading technologies and future perspectives: A review [J]. Environ Sci Pollut R, 2019, 26(12): 11631-11661.
SHAH M S, TSAPATSIS M, SIEPMANN J I. Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes [J]. Chem Rev, 2017, 117(14): 9755-9803.
刘振冲, 杜昭, 马海彬. 硫化氢干法脱除技术及硫磺回收研究进展[J]. 应用化工, 2023, 52(3): 911-916.
YANG C, WANG Y S, LIANG M S, et al. Towards improving H2S catalytic oxidation on porous carbon materials at room temperature: A review of governing and influencing factors, recent advances, mechanisms and perspectives [J]. Appl Catal B: Environ, 2023, 323: 122133.
尹梦雪, 樊飞跃, 赵龙, 等. 硫化氢催化氧化技术的研究进展[J]. 环境工程技术学报, 2020, 10(3): 475-481.
CAO Y N, ZHENG X H, DU Z J, et al. Low-temperature H2S removal from gas streams over γ-FeOOH, γ-Fe2O3, and α-Fe2O3: Effects of the hydroxyl group, defect, and specific surface area [J]. Ind Eng Chem Res, 2019, 58: 19353-19360.
郭燕, 项裕桥, 赵柏, 等. 分子筛材料在煤气脱H2S中的研究进展[J]. 洁净煤技术, 2022, 28(1): 175-186.
OLIVEIRA L H D, MENEGUIN J G, PEREIRA M V, et al. H2S adsorption on NaY zeolite [J]. Micropor Mesopor Mat, 2019, 284: 247-257.
汤吉昀, 陈 娟, 张肖阳, 等. 活性炭孔径和表面性质对H2S吸附脱除的影响[J]. 燃煤科学与技术, 2022, 28(6): 708-714.
LIU Y, SONG C Y, WANG Y C, et al. Rational designed Co@N-doped carbon catalyst for high-efficient H2S selective oxidation by regulating electronic structures [J]. Chem Eng J, 2020, 401: 126038.
PAN Y K, XU H, CHEN M Q, et al. Unveiling the nature of room-temperature O2 activation and O2- enrichment on MgO-loaded porous carbons with efficient H2S oxidation [J]. ACS Catal, 2021, 11: 5974-5983.
YANG C, YE H F, BYUN J Y, et al. N‑rich carbon catalysts with economic feasibility for the selective oxidation of hydrogen sulfide to sulfur [J]. Environ Sci Technol, 2020, 54: 12621-12630.
LI F, MENG F Z, WANG H, et al. Urea-modified grass ash activated sludge carbon: Structure and adsorption properties towards H2S and CH3SH [J]. New J Chem, 2019, 43: 17494-17501.
PAN Y K, CHEN M Q, HU M F, et al. Probing the room temperature oxidative desulfurization activty of three-dimensional alkaline graphene aerogel [J]. Appl Catal B: Environ, 2020, 262: 118266.
LI Y R, LIN Y T, XU Z C, et al. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon [J]. Fuel Process Technol, 2019, 189: 110-119.
张革, 李国华, 杨帆, 等. 碳基复合材料在深度脱硫领域的研究[J]. 太原理工大学学报, 2022, 53(3): 559-570.
LI D, CHEN W H, WU J P, et al. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: Focus on N functional groups [J]. J Mater Chem A, 2020, 8: 24977-24995.
WU J P, CHEN W H, CHEN L, et al. Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H2S over biomass derived activated carbon [J]. J Hazard Mater, 2022, 424: 127648.
BARELLI L, BIDINI G, ARESPACOCHAGA D N, et al. Biogas use in high temperature fuel cells: Enhancement of KOH-KI activated carbon performance toward H2S removal [J]. Int J Hydrogen Energ, 2017, 42(15): 10341-10353.
张辛亥, 赵思琛, 朱辉, 等. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435.
于涛, 王运东, 刘作华, 等. 硫化氢深度吸附材料的研究进展[J]. 化工学报, 2021, 72(2): 748-760.
YANG C, FLORENT M, FALCO D G, et al. ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature [J]. Chem Eng J, 2020, 394: 124906.
SIRIWARDANE I W, UDANGAWA R, SILVA DE R M, et al. Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications [J]. Mater Design, 2017, 136: 127-136.
LIU B T, KE Y X. Enhanced selective catalytic oxidation of H2S over Ce-Fe/AC catalysts at ambient temperature [J]. J Taiwan Inst Chem E, 2020, 110: 28-33.
YANG C, WANG Y S, Fan H L, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation [J]. Appl Catal B: Environ, 2020, 266: 118674.
FALCO D G, MONTAGNARO F, BALSAMO M, et al. Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature [J]. Micropor Mesopor Mat, 2018, 257: 135-146.
YU Z F, WANG X Z, HOU Y N, et al. Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization [J]. Carbon, 2017, 117: 376-382.
WANG J T, KE C Y, JIA X F, et al. Polyethyleneimine-functionalized mesoporous carbon nanosheets as metal-free catalysts for the selective oxidation of H2S at room temperature [J]. Appl Catal B: Environ, 2021, 283: 119650.
CHEN L, YUAN J, LI T B, et al. A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H2S removal at room temperature [J]. Sci Total Environ, 2021, 768: 144452.
ZHANG Z, WANG J T, LI W C, et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature [J]. Carbon, 2016, 96: 608-615.
CHEN Y L, MA C, WU Y, et al. Efficient removal of H2S with zinc oxide/nitrogen-doped ordered mesoporous carbons at room temperature [J]. Micropor Mesopor Mat, 2022, 333: 111712.
PAN Y K, CHEN M Q, SU Z, et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization [J]. Appl Catal B: Environ, 2021, 280: 119444.
KUMAR S, RANI R, DILBAGHI N, et al. Carbon nanotubes: A novel material for multifaceted applications in human healthcare [J]. Chem Soc Revs, 2017, 46: 158-196.
RASHIDI A, ABBASABADI M K, KHODABAKHSHI S. Allylamide-grafted multiwall carbon nanotubes as a new type of nanoadsorbent for the H2S removal from gas stream [J]. J Nat Gas Sci Eng, 2016, 36: 13-19.
JI K, ZHANG Y C, LI H, et al. Anchoring HFO nanoparticles on MWCNTs as high electron transfer composite adsorbent for the removal of H2S at low temperature [J]. Sep Purif Technol, 2021, 275: 119221.
出毅能, 唐东林, 柯志军, 等. 聚乙烯亚胺功能化多壁碳纳米管的制备及对硫化氢气体的吸附性能[J]. 高分子材料科学与工程, 2016, 32(11): 114-117.
XU H, PAN Y K, HU F, et al. Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room temperature H2S removal [J]. J Mater Chem A, 2022, 10: 18308.
KHODADADI Z. Evaluation of H2S sensing characteristics of metals-doped graphene and metals-decorated graphene: Insights from DFT study [J]. Physica E, 2018, 99: 261-268.
张文杰, 侯美玲, 周兴, 等. 基于第一性原理计算硫化氢(H2S)在Pt-graphene上的吸附性能和解离机理[J]. 燃料化学学报, 2022, 50(9): 1211-1220.
AHMADI R, ALIVAND M S, TEHRANI N H M H, et al. Preparation of fiber-like nanoporous carbon from jute thread waste for superior CO2 and H2S removal from natural gas: Experimental and DFT study [J]. Chem Eng J, 2021, 415: 129076.
BAJAJ B, JOH H, JO S M, et al. Enhanced reactive H2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles [J]. Appl Surf Sci, 2018, 429: 253-257.
SUN M H, WANG X Z, PAN X, et al. Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide [J]. Fuel Process Technol, 2019, 191: 121-128.
SUN M H, WANG X Z, LI Y, et al. Selective catalytic oxidation of pollutant H2S over Co-decorated hollow N-doped carbon nanofibers for high-performance Li-S batteries [J]. Appl Catal B: Environ, 2022, 317: 121763.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构