浏览全部资源
扫码关注微信
中国海洋石油有限公司,北京 100020
李海波(1970—),硕士,高级工程师,研究方向为海上风电、氢能和海洋能等新能源领域的技术研究及管理,E-mail:lihb3@cnooc.com.cn。
纸质出版日期:2024-02-25,
收稿日期:2023-07-08,
修回日期:2023-08-29,
扫 描 看 全 文
李海波.深远海海上风电制氨场景及技术分析[J].低碳化学与化工,2024,49(02):115-123.
LI Haibo.Analysis of scenarios and technologies for offshore wind power ammonia production in deep-sea[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):115-123.
李海波.深远海海上风电制氨场景及技术分析[J].低碳化学与化工,2024,49(02):115-123. DOI: 10.12434/j.issn.2097-2547.20230240.
LI Haibo.Analysis of scenarios and technologies for offshore wind power ammonia production in deep-sea[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):115-123. DOI: 10.12434/j.issn.2097-2547.20230240.
海上风电将朝着深远海化、规模化和浮式化发展,而离岸距离较远的深远海海上风电的储能和消纳是一项挑战。通过对国内外这一领域文献的解读,分析得出深远海海上风电制氨(海上风电制氨,下同)可以实现大规模储能和能量从海上向陆上消费端的转移,便于发挥下游大规模消纳和利用的优势。结合我国海上油气工业的技术与装备经验,提出了深水半潜式生产储氨平台、浮式生产储卸氨船和浮式海上风电平台分布式制氨3种适用于深远海海上风电就地制氨的创新应用场景,总结了适合于不同场景的制氨技术路线。结果表明,大中型低温低压合成氨技术适合于深水半潜式生产储氨平台和浮式生产储卸氨船场景,小型橇装低温低压合成氨技术和新型电催化合成氨技术更适合于浮式海上风电平台分布式制氨场景。分析了不同制氨技术的发展现状和面临的难题,并对未来深远海海上风电海上制氨的研究方向提出了建议。
Offshore wind power will develop towards deep-sea
large-scale and floating
while the energy storage and consumption of offshore wind power are challenges. Based on the interpretation of domestic and foreign literature in this field
it is found that offshore wind power ammonia production in deep-sea has the advantages of realizing large-scale energy storage and energy transfer from the sea to the land consumption end
and facilitating large-scale consumption and utilization in the downstream. Combined with the experience of technology and equipment in China’s offshore oil and gas industry
three innovative application scenarios for offshore wind power ammonia production in deep-sea: deep water semi-submersible ammonia production and storage platform
floating ammonia production
storage and unloading ship and floating offshore wind power platform were put forward
and the technical routes for ammonia production in different scenarios were summarized. It is concluded that large and medium-sized low-temperature and low-pressure ammonia synthesis technology is suitable for semi-submersible ammonia production and storage platform and floating ammonia production
storage and unloading ship
while small skid-mounted low-temperature and low-pressure ammonia synthesis technology and new electro-catalytic ammonia synthesis technology are more suitable for floating offshore wind power platform. The development status and difficulties of ammonia production technologies were analyzed. Finally
some suggestions on the future research direction of offshore wind power ammonia production in deep-sea were given.
深远海海上风电绿氨合成氨
deep-seaoffshore wind powergreen ammoniasynthesis ammonia
全球风能理事会(GWEC). 全球风能报告2023[R]. 比利时: 全球风能理事会(GWEC), 2023.
Global Wind Energy Council (GWEC). Global Wind Energy Report 2023 [R]. Belgium: Global Wind Energy Council (GWEC), 2023.
刘玉新, 郭越, 黄超. 中外海上风电发展形势和政策比较研究[J].科技管理研究, 2023, 43(8): 65-70.
LIU Y X, GUO Y, HUANG C. A comparative study on the development situation and policies of offshore wind power in china and abroad [J].Science and Technology Management Research, 2023, 43(8): 65-70.
国家能源局. 我国风力发电正在“走向深海”[EB/OL]. (2022-01-21)[2022-02-18]. http://www.nea.gov.cn/2022-01/21/c_1310437803.htmhttp://www.nea.gov.cn/2022-01/21/c_1310437803.htm.
National Energy Administration. China’s wind power generation is “going deep into the sea” [EB/OL]. (2022-01-21)[2022-02-18]. http://www.nea.gov.cn/2022-01/21/c_1310437803.htmhttp://www.nea.gov.cn/2022-01/21/c_1310437803.htm.
王素霞. 国内外风力发电的情况及发展趋势[J]. 电力技术经济, 2007, 19(1): 29-31.
WANG S X. Status and development trend of wind power in domestic and oversea [J]. Electric Power Technologic Economics, 2007, 19(1): 29-31.
金春鹏. 海上风电开发与多能源协同供电规模化制氢(氧)产业基地建设研究[J]. 中国工程科学, 2015, 17(3): 56-59+66.
JIN C P. Offshore wind power development and hydrogen (oxygen) production industrial base construction in multi energy cooperative supply system [J]. Strategic Study of CAE, 2015, 17(3): 56-59+66.
李梓丘, 乔颖, 鲁宗相. 海上风电-氢能系统运行模式分析及配置优化[J]. 电力系统自动化, 2022, 46(8): 104-112.
LI Z Q, QIAO Y, LU Z X. Operation mode analysis and configuration optimization of offshore wind-hydrogen system [J]. Automation of Electric Power Systems, 2022, 46(8): 104-112.
杨源, 陈亮, 王小虎, 等. 海上风电-氢能综合能源监控系统设计[J]. 南方能源建设, 2020, 7(2): 35-40.
YANG Y, CHEN L, WANG X H, et al. Design of integrated offshore wind power-hydrogen energy monitoring system [J]. Southern Energy Construction, 2020, 7(2): 35-41.
宋鹏飞. “双碳”背景下煤制天然气与LNG产业及可再生能源协同发展路径的思考[J]. 油气与新能源, 2022, 34(2): 88-93.
SONG P F. Thoughts on the coordinated development path of SNG, LNG industry and renewable energy under the background of “Dual-Carbon” [J]. Petroleum and New Energy, 2022, 34(2): 88-93.
宋鹏飞, 张超, 肖立, 等. 对天然气产业与氢能产业融合发展的战略思考[J]. 油气与新能源, 2023, 35(2): 37-45.
SONG P F, ZHANG C, XIAO L, et al. Strategic thinking of the integrated development of natural gas industry and hydrogen industry [J]. Petroleum and New Energy, 2023, 35(2): 37-45.
王艳辉, 吴迪镛, 迟建. 氢能及制氢的应用技术现状及发展趋势[J]. 化工进展, 2001, 20(1): 6-9.
WANG Y H, WU D Y, CHI J. The status and development current of hydrogen energy and its application technology [J]. Chemical Industry and Engineering Progress, 2001, 20(1): 6-9.
邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG Q, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy [J]. Natural Gas Industry, 2022, 42(4): 1-20.
ANDERSSON J, GRÖNKVIST, STEFAN. Large-scale storage of hydrogen [J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919.
KOJIMA Y. Hydrogen storage materials for hydrogen and energy carriers [J]. International Journal of Hydrogen Energy, 2019, 44(33): 18179-18192.
MAKEPEACE J W, HE T, WEIDENTHALER C, et al. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress [J]. International Journal of Hydrogen Energy, 2019, 44(15): 7746-7767.
METKEMEIJER R, ACHARD P. Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell [J]. International Journal of Hydrogen Energy, 1994, 19(6): 535-542.
李卫东, 李逸龙, 滕霖, 等. “双碳”目标下的氨能技术与经济性研究进展[J]. 化工进展, 2023, 42(12): 6226-6238.
LI W D, LI Y L, TENG L, et al. Research progress on ammonia energy technology and economy under “carbon emission peak” and “carbon neutrality” targets [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238.
毕马威中国. 绿氨行业概览与展望[R]. 北京: 毕马威中国, 2022.
KPMG China. Overview and prospect of green ammonia industry [R]. Beijing: KPMG China, 2022.
滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129.
TENG L, YIN P B, NIE C F, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia [J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129.
吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33.
WU Q, SHEN J X, YU L, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the “Dual-Carbon” background [J]. Petroleum and New Energy, 2022, 34(5): 27-33.
国家市场监管技术创新中心. 绿氨发展现状与趋势[EB/OL]. (2023-06-13)[2023-08-29]. https://www.51315.org.cn/content/3912.aspxhttps://www.51315.org.cn/content/3912.aspx.
National Market Supervision Technology Innovation Center. Development status and trend of green ammonia [EB/OL]. (2023-06-13)[2023-08-29]. https://www.51315.org.cn/content/3912.aspxhttps://www.51315.org.cn/content/3912.aspx.
王雪颖. 日本第六次能源基本计划研究摘要[EB/OL]. (2022-07-11)[2023-08-29]. https://baijiahao.baidu.com/s?id=1738054255425412962&wfr=spider&for=pchttps://baijiahao.baidu.com/s?id=1738054255425412962&wfr=spider&for=pc.
WANG X Y. Summary of the sixth japanese basic energy plan [EB/OL]. (2022-07-11)[2023-08-29]. https://baijiahao.baidu.com/s? id=1738054255425412962&wfr=spider&for=pchttps://baijiahao.baidu.com/s?id=1738054255425412962&wfr=spider&for=pc.
财联社. 目前国内在建及规划的绿氨项目年产能合计超480万吨[EB/OL]. (2023-05-11)[2023-07-01]. https://finance.ifeng.com/c/8PhsWJ059guhttps://finance.ifeng.com/c/8PhsWJ059gu.
Cai Lian Press. At present, the total annual production capacity of green ammonia projects under construction and planning in China exceeds 4.8 million tons [EB/OL]. (2023-05-11)[2023-07-01]. https://finance.ifeng.com/c/8PhsWJ059guhttps://finance.ifeng.com/c/8PhsWJ059gu.
LESMANA H, ZHANG Z, LI X, et al. NH3 as a transport fuel in internal combustion engines: A technical review [J]. Journal of Energy Resources Technology, 2019, 141(7): 70703.
王明华. 氢能储运技术经济性分析及建立绿氨储运基地设想[J]. 现代化工, 2023, 43(6): 1-5.
WANG M H. Economic analysis on hydrogen energy storage and transportation technologies and tentative plan in establishing a green ammonia storage-transportation base [J]. Modern Chemical Industry, 2023, 43(6): 1-5.
KLERKE A, CHRISTENSEN C H,et al. Ammonia for hydrogen storage: Challenges and opportunities [J]. Journal of Materials Chemistry, 2008, 18(20): 2304.
陈泽芳. 中国合成氨行业市场发展现状及投资价值评估2023[EB/OL]. (2023-06-19)[2023-07-01]. https://www.chinairn.com/hyzx/20230619/151155778.shtmlhttps://www.chinairn.com/hyzx/20230619/151155778.shtml.
CHEN Z F. China synthetic ammonia industry market development status and investment value evaluation 2023 [EB/OL]. (2023-06-19)[2023-07-01]. https://www.chinairn.com/hyzx/20230619/151155778.shtmlhttps://www.chinairn.com/hyzx/20230619/151155778.shtml.
International Energy Agency. Net zero by 2050 [R]. France: IEA, 2021.
孙晖, 孟祥海, 魏景海, 等. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102.
SUN H, MENG X H, WEI J H, et al. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102.
李俊彪, 王明华. 基于不同情景模式的燃煤掺氨发电技术的经济性分析[J]. 中国煤炭, 2022, 48(5): 54-59.
LI J B, WANG M H. Economic analysis of ammonia mixed coal-fired power generation technology based on different scenario modes [J]. China Coal, 2022, 48(5): 54-59.
金融界. 国际领先, 燃煤发电大比例掺氨技术实现突破展[EB/OL]. (2023-04-11)[2023-07-01]. https://www.163.com/dy/article/I21FTGJI0519QIKK.htmlhttps://www.163.com/dy/article/I21FTGJI0519QIKK.html.
Financial Sector. International leading, breakthrough exhibition of large proportion ammonia mixing technology for coal-fired power generation [EB/OL]. (2023-04-11)[2023-07-01]. https://www.163.com/dy/article/I21FTGJI0519QIKK.htmlhttps://www.163.com/dy/article/I21FTGJI0519QIKK.html.
李在鹏, 冷阿伟, 邹成业, 等. 一种利用海上风电场的制氢制氨平台: 218559119U [P]. 2023-03-03.
LI Z P, LENG A W, ZOU C Y, et al. A hydrogen and ammonia production platform using offshore wind farms: 218559119U [P]. 2023-03-03.
孙凯强, 张义明, 季宝军, 等. 一种基于风电的海上制氢制氨储舱平台: 216215922U [P]. 2022-04-05.
SUN K Q, ZHANG Y M, JI B J, et al. A storage platform for offshore hydrogen production and ammonia production based on wind power: 216215922U [P]. 2022-04-05.
刘富斌, 桂薇, 刘国军, 等. 浮式风电制氢装置设计研究[J].能源研究与信息, 2022, 38(3): 144-149.
LIU F B, GUI W, LIU G J, et al. Design of floating wind turbine with hydrogen production [J]. Energy Research and Information, 2022, 38(3): 144-149.
赵亚男. 常温常压绿色合成氨技术的研究[D]. 上海: 华东师范大学, 2022.
ZHAO Y N. Research on the technology of green synthetic ammonia under normal temperature and pressure [D]. Shanghai: East China Normal University, 2022.
徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景[J]. 化学通报, 2019, 82(3): 214-220.
XU Y M, ZHENG C M, ZHANG Y H. Application prospect of ammonia energy as clean energy [J]. Chemistry, 2019, 82(3): 214-220.
KITANO M, INOUE Y, YAMAZAKI Y, et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store [J]. Nature Chemistry, 2012, 4(11): 934-940.
KHRR A, ALOIJSIUS G J. VAN DER HAM B,et al. Beyond Haber-Bosch: The renaissance of the claude process [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21566-21579.
谢易奇. 绿氢应用于甲醇和合成氨工业的情景和路径[C]. 上海: 2021势银氢能与燃料电池产业年会, 2021: 1-24.
XIE Y Q. Scenarios and paths of green hydrogen applied to methanol and synthetic ammonia industry [C]. Shanghai: 2021 Annual Meeting of Silver Hydrogen Energy and Fuel Cell Industry, 2021: 1-24.
WANG K, SMITH D, ZHENG Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective [J]. Carbon Resources Conversion, 2018, 1(1): 2-31.
MICHAELNAYAK-LUKE R M, RENÉBAARES-ALCÁNTARA R. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production [J]. Energy & Environmental Science, 2020, 13(9): 2957-2966.
关浩然, 朱丽娜, 朱凌岳, 等. 利用不同氢源及氮源电化学合成氨研究进展与挑战[J]. 化工进展, 2022, 41(8): 4098-4110.
GUAN H R, ZHU L N, ZHU L Y, et al. Progress and challenges of electrochemical synthesis of ammonia from different hydrogen and nitrogen sources [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4098-4110.
李红涛, 安敏桥. 浅析我国氨(NH3)合成化工技术工艺[J]. 中小企业管理与科技, 2014(7): 323-324.
LI H T, AN M Q. Analysis of China’s ammonia (NH3) synthesis chemical technology [J]. Management & Technology of SME, 2014(7): 323-324.
SMITH C, HILL A K, TORRENTE-MURCIANO L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape [J]. Energy & Environmental Science, 2020, 13(2): 331-344.
HANK C, GELPKE S, SCHNABL A, et al. Economics & Carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide-power-to-methanol [J]. Sustainable Energy & Fuels, 2018, 2(6): 1244-1261.
安广禄, 刘永忠, 康丽霞. 适应季节性氨需求的可再生能源合成氨系统优化设计[J]. 化工学报, 2021, 72(3): 1595-1605.
AN G L, LIU Y Z, KANG L X. Optimal design of synthetic ammonia production system powered by renewable energy for seasonal demands of ammonia [J]. CIESC Journal, 2021, 72(3): 1595-1605.
吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11.
JI X, ZHOU B X, HE G, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production [J]. Advanced Engineering Sciences, 2022, 54(5): 1-11.
周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385.
ZHOU H J, ZHOU Y, XU C M. Exploration of the CO2 conversion under China’s carbon neutrality goal [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385.
VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell [J]. Solid State Ionics, 2015, 275: 110-116.
范文龙, 李林哲, 薛志伟, 等. 电催化合成氨研究进展[J]. 化工进展, 2021, 40(6): 3005-3020.
FAN W L, LI L Z, XUE Z W, et al. Research progress of electrocatalytic ammonia synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3005-3020.
HU L, XING Z, FENG X F. Understanding the electrocatalytic interface for ambient ammonia synthesis [J]. ACS Energy Letters, 2020, 5(2): 430-436.
雍瑞生, 杨川箬, 薛明, 等. 氨能应用现状与前景展望[J]. 中国工程科学, 2023, 25(2): 111-121.
YONG R S, YANG C R, XUE M, et al. Application status and prospect of ammonia energy [J]. Strategic Study of CAE, 2023, 25(2): 111-121.
WANG X, PENG X, CHEN W, et al. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst [J]. Nature Communicaton, 2020, 11(1): 653.
王迪, 杨江蕊, 佟磊, 等. 常温常压电化学合成氨催化剂研究进展[J]. 山东化工, 2023, 52(2): 93-100.
WANG D, YANG J R, TONG L, et al. Research progress of catalysts for eletrochemical synthetic of ammonia at room temperature and atmospheric pressure [J]. Shandong Chemical Industry, 2023, 52(2): 93-100.
SHIPMAN M A, SYMES M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources [J]. Catalysis Today, 2017, 286: 57-68.
荣杨佳, 王成雄, 张秀娟, 等. 低温电化学合成氨催化剂研究进展[J]. 贵金属, 2021, 42(4): 76-87.
RONG Y J, WANG C X, ZHANG X J, et al. Research progress of low-temperature electrochemical ammonia synthesis catalyst [J]. Precious Metals, 2021, 42(4): 76-87.
0
浏览量
576
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构