浏览全部资源
扫码关注微信
成都信息工程大学 资源环境学院 大气环境模拟与污染控制四川省高校重点实验室,四川 成都 610225
赵治华(1997—),硕士研究生,研究方向为环境催化和大气污染控制,E-mail:1427085223@qq.com。
徐成华(1972—),博士,教授,研究方向为环境催化和大气污染控制,E-mail:xch@cuit.edu.cn。
纸质出版日期:2024-02-25,
收稿日期:2023-06-30,
修回日期:2023-07-25,
扫 描 看 全 文
赵治华,徐成华,任红等.造孔剂诱导合成FeCoCuAl催化剂及其与ZSM-5复合催化CO2加氢制高碳烃性能[J].低碳化学与化工,2024,49(02):10-16.
ZHAO Zhihua,XU Chenghua,REN Hong,et al.Pore-forming agent induced synthesis of FeCoCuAl catalysts and their performance in hydrogenation of CO2 to high carbon hydrocarbons with ZSM-5[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):10-16.
赵治华,徐成华,任红等.造孔剂诱导合成FeCoCuAl催化剂及其与ZSM-5复合催化CO2加氢制高碳烃性能[J].低碳化学与化工,2024,49(02):10-16. DOI: 10.12434/j.issn.2097-2547.20230234.
ZHAO Zhihua,XU Chenghua,REN Hong,et al.Pore-forming agent induced synthesis of FeCoCuAl catalysts and their performance in hydrogenation of CO2 to high carbon hydrocarbons with ZSM-5[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):10-16. DOI: 10.12434/j.issn.2097-2547.20230234.
CO
2
加氢制高碳烃(C
5+
)是合成高值化学品和燃料的重要途径之一,这既可以实现碳减排,又有助于缓解能源压力。采用沉淀法和等体积浸渍法制备了K、Na修饰的FeCoCuAl催化剂,考察了造孔剂1
3
5-苯三甲酸(BTA)对其在CO
2
催化加氢制高碳烃反应(温度为300 ℃、压力为2.0 MPa、原料气
n
(H
2
):
n
(CO
2
) = 3:1且空速为3600 h
-1
、时间为6 h)中催化性能的影响。在FeCoCuAl-20.0BTA催化剂(
n
(BTA):
n
(Fe) = 20.0%)中引入ZSM-5分子筛,构建了一系列复合催化剂,并研究了其在CO
2
催化加氢制高碳烃反应中的催化性能。结合N
2
吸/脱附、X射线衍射(XRD)、H
2
-程序升温还原(H
2
-TPR)、CO
2
程序升温脱附(CO
2
-TPD)和H
2
升温脱附(CO
2
-TPD)等对催化剂的理化性质进行了表征,采用GC-MS对产物油相成分进行了分析。结果表明,与FeCoCuAl催化剂相比,FeCoCuAl-BTA催化剂的比表面积、孔容等均增大,并生成了更多的表面活性物种(Fe或Fe-Co合金),从而使得FeCoCuAl-BTA催化剂在CO
2
催化加氢反应中表现出更好的催化性能。FeCoCuAl-20.0BTA催化剂的CO
2
转化率和C
5+
选择性分别可达70%和42%。FeCoCuAl-20.0BTA催化剂催化CO
2
加氢生成的产物以C
2
~C
4
产物为主,而在FeCoCuAl-20.0BTA催化剂与ZSM-5分子筛以质量比为1.0、颗粒机械混合方式构建的复合催化剂上,FeCoCuAl-20.0BTA上生成的C
2
~C
4
产物可在ZSM-5分子筛上发生原位链增长、异构化和芳构化反应,从而提高了CO
2
转化率和C
5+
选择性,分别达到79%和66%。
CO
2
hydrogenation to high-carbon hydrocarbons (C
5+
) is one of the important ways to synthesize high-value chemicals and fuels
which can achieve carbon emission reduction as well as help to alleviate energy pressure. K- and Na-modified FeCoCuAl catalysts were prepared by precipitation and iso-volumetric impregnation methods
and the effects of the pore-forming agent 1
3
5-benzenetricarboxylic acid (BTA) on their catalytic performance in CO
2
-catalyzed hydrogenation to high-carbon hydrocarbons reaction(temperature of 300 ℃
pressure of 2.0 MPa
n
(H
2
):
n
(CO
2
) = 3:1 and space velocity of 3600 h
-1
of feed gas
reaction for 6 h) were investigated. ZSM-
5 molecular sieve was introduced into FeCoCuAl-20.0BTA catalyst (
n
(BTA):
n
(Fe) = 20.0%) to construct a series of composite catalysts and their catalytic performance in the reaction of catalytic hydrogenation of CO
2
to high-carbon hydrocarbons was investigated. The physicochemical properties of the catalysts were characterized by combining N
2
adsorption/desorption
X ray diffraction (XRD)
H
2
-temperature programmed reduction (H
2
-TPR)
CO
2
temperature programmed desorption (CO
2
-TPD)
and H
2
temperature programmed desorption (CO
2
-TPD)
and the oil-phase compositions of the products were analyzed by GC-MS. The results show that compared with FeCoCuAl catalysts
the specific surface area and pore volume of FeCoCuAl-BTA catalysts increase
and generate more surface-active species (Fe or Fe-Co alloy)
which lead to better catalytic performance of FeCoCuAl-BTA catalysts in CO
2
catalytic hydrogenation reaction. The CO
2
conversion rate and C
5+
selectivity of FeCoCuAl-20.0BTA catalyst are up to 70% and 42%
respectively
and the products generated from CO
2
hydrogenation catalyzed by FeCoCuAl-20.0BTA catalyst are mainly C
2
~C
4
products
while on the composite catalyst constructed with FeCoCuAl-20.0BTA catalyst and ZSM-5 molecular sieve in the form of mechanical mixing of particles with the mass ratio of 1.0
the C
2
~C
4
products generated on FeCoCuAl-20.0BTA can undergo in situ chain growth
isomerization and aromatization reactions on ZSM-5 molecular sieves
which lead to the improvement of CO
2
conversion rate and C
5+
selectivity
reaching 79% and 66%
respectively.
造孔剂FeCoCuAl催化剂ZSM-5CO2加氢高碳烃
pore-forming agentFeCoCuAl catalystsZSM-5CO2 hydrogenationhigh-carbon hydrocarbons
SOLOMON S, PLATTNER G K, KNUYYI R, et al. Irreversible climate change due to carbon dioxide emissions [J]. Proceedings of The National Academy of Sciences of The United States of America, 2009, 106(6): 1704-1709.
李娜, 杨景胜, 陈嘉茹. “双碳”背景下能源行业的机遇和挑战[J]. 中国国土资源经济, 2021, 34(12): 63-69.
LI N, YANG J S, CHEN J R. Opportunities and challenges of energy industry under the background of “Carbon Emission Peak” and “Carbon Neutrality”[J]. Natural Resource Economics of China, 2021, 34(12): 63-69.
JESSOP P G, IKARIYA T, NOYORI R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide [J]. Nature, 1994, 368(6468): 231-233.
BROWN N J, WEINER J, HELLHARDT K, et al. Phosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO2 hydrogenation to methanol [J]. Chemical Communications, 2013, 49(94): 11074-11076.
MANGLA A, DEO G, APTE P A. NiFe local ordering in segregated Ni3Fe alloys: A simulation study using angular dependent potential [J]. Computational Materials Science, 2018, 153: 449-460.
ATSBHA T A, YOON T, SEONGHO P, et al. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons [J]. Journal of CO2 Utilization, 2021, 44: 101413.
DORNER R W, HARDY D R, WILLIAMS F W, et al. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons [J]. Energy & Environmental Science, 2010, 3: 884-890.
ZHANG J L, SU X J, WANG X, et al. Promotion effects of Ce added Fe-Zr-K on CO2 hydrogenation to light olefins [J]. Reaction Kinetics Mechanisms and Catalysis, 2018, 124: 575-585.
SATTHAWONG R, KOIZUMI N, SONG C, et al. Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts [J]. Catalysis Today, 2015, 251: 34-40.
ZHENG Y H, XU C H, ZHANG X, et al. Synergistic effect of alkali Na and K promoter on Fe-Co-Cu-Al catalysts for CO2 hydrogenation to light hydrocarbons [J]. Catalysts, 2021, 11(6): 735.
GNANAMANI M K, HAMDEH H H, JACOBS G, et al. Hydrogenation of carbon dioxide over K-promoted FeCo bimetallic catalysts prepared from mixed metal oxalates [J]. ChemCatChem, 2017, 9: 1303-1312.
WANG S, WU T, LIN J, et al. FeK-on-3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO2 conversion to aromatics [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17825-17833.
CUI X, GAO P, LI S, et al. Selective production of aromatics directly from carbon dioxide hydrogenation [J]. ACS Catalysis, 2019, 9(5): 3866-3876.
XU Y, SHI C, BING L, et al. Selective production of aromatics from CO2 [J]. Catalysis Science & Technology, 2019, 9(3): 593-610.
GRNG S, JIANG F, XU Y, et al. Iron-based Fischer-Tropsch synthesis for the efficient conversion of carbon dioxide into isoparaffins [J]. ChemCatChem, 2016, 8(7): 1303-1307.
RAMIREZ A, CHOWDHURY A D, DOKANIA A, et al. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics [J]. ACS Catalysis, 2019, 9(7): 6320-6334.
WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel [J]. Nature Communications, 2017, 8(1): 15174.
GNANAMANI M K, JACOBS G, HAMDEH H H, et al. Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts [J]. ACS Catalysis, 2016, 6(2): 913-927.
LIU B, GENG S, ZHENG J, et al. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins [J]. ChemCatChem, 2018, 10(20): 4718-4732.
NUMPILAI T, CHANLEK N, POO-ARPORN Y, et al. Tuning interactions of surface-adsorbed species over Fe-Co/K-Al2O3 catalyst by different K contents: Selective CO2 hydrogenation to light olefins [J]. ChemCatChem, 2020, 12(12): 3306-3320.
LI Z L, QU Y Z, WANG J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts [J]. Joule, 2019, 3(2): 570-583.
SONG G Y, LI M Z, YAN P K, et al. High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5 [J]. ACS Catalysis, 2020, 10(19): 11268-11279.
0
浏览量
134
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构