1.中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580
2.中国石油大学(华东) 山东省油气储运安全省级重点实验室,山东 青岛 266580
唐建峰(1973—),博士,教授,博士生导师,研究方向为天然气预处理、油气田地面集输,E-mail:tangpaper@126.com。
扫 描 看 全 文
唐建峰, 陈洁, 桑伟, 等. MDEA/正丁醇/水相变吸收剂的CO2吸收性能及动力学特性[J]. 低碳化学与化工, 2023,48(5):115-124.
TANG Jianfeng, CHEN Jie, SANG Wei, et al. CO2 absorption properties and kinetics characteristics of MDEA/
唐建峰, 陈洁, 桑伟, 等. MDEA/正丁醇/水相变吸收剂的CO2吸收性能及动力学特性[J]. 低碳化学与化工, 2023,48(5):115-124. DOI: 10.12434/j.issn.2097-2547.20230205.
TANG Jianfeng, CHEN Jie, SANG Wei, et al. CO2 absorption properties and kinetics characteristics of MDEA/
N-甲基二乙醇胺(MDEA)/正丁醇/水相变吸收剂具有良好的相分离性能,具有大幅降低再生能耗的潜力。由于正丁醇取代了相变吸收剂中的部分水,且相变吸收剂在吸收过程中会发生分相,会对溶液的CO,2,吸收性能和反应机理造成一定影响,且贫、富相间物质的转移也会对其动力学性能产生一定的影响。为此,研究了MDEA/正丁醇/水相变吸收剂的吸收性能,并通过,13,C NMR表征测试了不同CO,2,负荷下溶液的物质组成,分析了MDEA/正丁醇/水相变吸收剂的传质-反应机理,在此基础上探究了其动力学特性。结果表明,溶液中正丁醇的加入,提高了溶液前9 min的初始CO,2,吸收速率,随着正丁醇含量的升高,溶液的CO,2,吸收速率出现先增高后降低的趋势,CO,2,吸收负荷逐渐降低。物理溶剂正丁醇不参与反应,相变吸收剂中MDEA与CO,2,的反应遵循碱催化水和反应机理;分相后贫相溶液主要为MDEA、正丁醇和水,富相溶液主要为MDEA与CO,2,的反应产物。在CO,2,吸收负荷较低(小于1.12 mol/L)时,由于正丁醇提高了CO,2,在溶液中的物理溶解度,促进了贫相中MDEA与CO,2,的快速反应,继而又促进气相CO,2,的溶解。这种溶解促进反应、反应促进溶解的过程,使得MDEA/正丁醇/水相变吸收剂的初始CO,2,吸收速率高于MDEA水溶液;在CO,2,吸收负荷较高(大于1.45 mol/L)时,溶液的分相程度已经接近理想分相状态,贫相中的水含量较少,富相中的MDEA浓度较低、反应产物浓度较高,导致CO,2,与溶液的反应速率降低。
N-methyldiethanolamine (MDEA)/,n,-butanol/water phase change absorbent has good phase separation performance and has the potential to significantly reduce renewable energy consumption. Since ,n,-butanol replaces part of the water in the phase change absorbent, and phase separation occurs during the absorption process of the phase change absorbent, the CO,2, absorption performance and reaction mechanism of the solution are affected to a certain extent, and the transfer of the rich and lean interphase substances also has a certain impact on its kinetic performance. Therefore, the absorption properties of MDEA/,n,-butanol/water phase change absorbent were studied, and the material composition of the solution under different CO,2, loads was tested by ,13,C NMR characterization, and the mass transfer-reaction mechanism was analyzed. On this basis, the kinetic characteristics were explored. The results show that the addition of ,n,-butanol in the solution increases the initial CO,2 ,absorption rate in the first 9 min of the solution. With the increase of ,n,-butanol content, the CO,2 ,absorption rate of the solution increases first and then decreases, and the CO,2 ,absorption load gradually decreases. The physical solvent ,n,-butanol does not participate in the reaction, and the reaction of MDEA with CO,2, in the phase change absorbent follows the reaction mechanism of alkali catalyzed water. After phase separation, the lean phase solution is mainly MDEA,n,-butanol and water, and the rich phase solution is mainly the reaction products of MDEA and CO,2,. At low CO,2, absorption load (less than 1.12 mol/L),n,-butanol improves the physical solubility of CO,2, in solution, promotes the rapid reaction of MDEA with CO,2, in the lean phase, and then promotes the dissolution of CO,2, in the gas phase. The process of dissolution promoting reaction and reaction promoting dissolution makes the initial CO,2 ,absorption rate of MDEA/,n,-butanol/water phase change absorbent higher than that of MDEA aqueous solution. At high CO,2, absorption load (more than 1.45 mol/L), the phase separation degree of the solution is close to the ideal phase separation state, the water content in the lean phase is less, the concentration of MDEA in the rich phase is lower, and the concentration of reaction products is higher, which reduces the reaction rate of CO,2, and the solution.
相变吸收剂CO2吸收性能反应机理动力学
phase change absorbentCO2 absorptive propertyreaction mechanismkinetics
TAN Y T, NOOKUEA W, LI H L, et al. Property impacts on carbon capture and storage (CCS) processes: A review [J]. Energy Convers Manage, 2016, 118(15): 204-222.
DU Y, WANG Y K, ROCHELLE G T. Piperazine/4-hydroxy-1-methylpiperidine for CO2 capture [J]. Chem Eng J, 2017, 307: 258-263.
RAKSAJATI A, HO M T, WILEY D E. Reducing the cost of CO2 capture from flue gases using phase-change solvent absorption [J]. Energy Procedia, 2014, 63: 2280-2288.
BARZAGLI F, MANI F, PERUZZINI M. Novel water-free biphasic absorbents for efficient CO2 capture[J]. Int J Greenhouse Gas Control, 2017, 60: 100-109.
WANG L D, ZHANG Y F, WANG R J, et al. Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture [J]. Environ Sci Technol, 2018, 52(24): 14556-14563.
刘飞. 胺基两相吸收剂捕集二氧化碳机理研究[D]. 杭州: 浙江大学, 2020.
田志杰. 环丁砜/MEA相变体系吸收CO2反应动力学研究[D]. 北京: 华北电力大学, 2019.
于松华. 湿壁塔中新型相变溶剂吸收CO2反应动力学研究[D]. 北京: 华北电力大学, 2018.
张艺峰. 相变溶剂吸收二氧化碳反应的动力学研究[D]. 北京: 华北电力大学, 2019.
WANG L D, AN S L, LI Q W, et al. Phase change behavior and kinetics of CO2 absorption into DMBA/DEEA solution in a wetted-wall column [J]. Chem Eng J, 2017, 314: 681-687.
沈丽. 新型相变吸收剂AEP/正丙醇水溶液捕集二氧化碳传质—反应动力学[D]. 杭州: 浙江大学, 2021.
桑伟, 唐建峰, 花亦怀, 等. 物理溶剂及有机胺的性质对相变吸收性能的影响[J]. 化工进展, 2023, 42(4): 2151-2159.
付浩. MDEA为主体天然气脱碳胺液筛选及配比优化研究[D]. 东营: 中国石油大学(华东), 2014.
ARCIS H, RODIER L, BALLERAT-BUSSEROLLES K, et al. Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T = 322.5 K and pressure up to 5 MPa [J]. J Chem Thermodyn, 2008, 40(6): 1022-1029.
ZHENG Y, EL AHMAR E, SIMOND M, et al. CO2 heat of absorption in aqueous solutions of MDEA and MDEA/piperazine [J]. J Chem Eng Data, 2020, 65(8): 3784-3793.
SIDI-BOUMEDINE R, HORSTMANN S, FISCHER K, et al. Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions [J]. Fluid phase equilibria, 2004, 218(1): 85-94.
VERSTEEG G F, SWAAIJ W, HAMBORG E S. Diffusivities in aqueous solutions of the potassium salt of amino acids [J]. J Chem Eng Data, 2008, 53(5): 1141-1145.
SVENDSEN H F, HESSEN E T, MEJDELL T. Carbon dioxide capture by absorption, challenges and possibilities [J]. Chem Eng J, 2011, 171(3): 718-724.
ZHANG J F, QIAO Y, WANG W Z, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents [J]. Energy Procedia, 2013, 37: 1254-1261.
TAN Y H. Study of CO2-absorption into thermomorphic lipophilic amine solvents [D]. Dortmund: Technischen Universität Dortmund, 2010.
HIGBIE R. The rate of absorption of a pure gas into a still liquid during short periods of exposure [J]. Trans Am Inst Chem Engrs, 1935, 31: 365-389.
DANCKWERTS P V. Gas-liquid reactions [J]. J Electrochem Soc, 1970, 117(10): 369C.
WHITMAN W G. The two-film theory of gas absorption [J]. Int J Heat Mass Tran, 1924, 5(5): 429-433.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构