1.石化盈科信息技术有限责任公司 过程控制事业部,上海 200050
2.南京工业大学 化工学院,材料化学工程国家重点实验室,江苏 南京 211816
陈玉石(1981—),硕士,高级工程师,研究方向为化工过程模拟优化与控制,E-mail:Ys.chen@pcitc.com。
张春冬(1987—),博士,教授,研究方向为绿色能源化工,E-mail:zhangcd@njtech.edu.cn。
扫 描 看 全 文
陈玉石, 张春冬. 工业副产醋酸甲酯制醋酸正丙酯工艺设计与优化[J]. 低碳化学与化工, 2023,48(5):176-181.
CHEN Yushi, ZHANG Chundong. Process design and optimization of industrial byproduct methyl acetate to
陈玉石, 张春冬. 工业副产醋酸甲酯制醋酸正丙酯工艺设计与优化[J]. 低碳化学与化工, 2023,48(5):176-181. DOI: 10.12434/j.issn.2097-2547.20230200.
CHEN Yushi, ZHANG Chundong. Process design and optimization of industrial byproduct methyl acetate to
工业生产精对苯二甲酸的过程中会产生大量醋酸甲酯。为实现醋酸甲酯的有效利用,提出了一种利用酯交换和反应精馏技术的工艺,将醋酸甲酯和正丙醇转化为高附加值的醋酸正丙酯和甲醇,并进行了稳态建模计算。为降低产品分离过程的公用工程消耗,进一步采用变压精馏和热集成技术,对醋酸甲酯处理量为50 kmol/h的工艺进行了优化设计,并从技术(系统能耗和CO,2,排放量)和经济(年均总成本)两方面对优化前后的工艺进行了比较。结果表明,优化前,工艺的系统能耗为7.85 MW,CO,2,排放量为1.33 × 10,4, t/a,年均总成本为4.71 × 10,6, CNY/a;优化后,工艺的系统能耗降至4.44 MW,CO,2,排放量降至0.75 × 10,4, t/a,年均总成本降至3.29 × 10,6, CNY/a。本研究可为醋酸甲酯的高效利用和醋酸正丙酯的工业生产提供参考。
In the industrial production of purified terephthalic acid, a significant amount of methyl acetate is generated as a byproduct. To efficiently utilize methyl acetate, a process utilizing transesterification and reactive distillation technologies has been proposed to convert methyl acetate and ,n-,propanol into high-value ,n,-propyl acetate and methanol, with rigorous steady-state modeling. To reduce utility consumptions during the separation process, pressure swing distillation and heat integration technologies were further employed to optimize the process with a feedstock of 50 kmol/h of methyl acetate. A comparative analysis of the process before and after optimization was conducted from both technical (systematic energy consumptions and CO,2, emissions) and economic (total annual costs) perspectives. The results show that prior to optimization, the systematic energy consumptions of the process are 7.85 MW, CO,2, emissions amount to 1.33 × 10,4, t/a, and the total annual cost is 4.71 × 10,6, CNY/a. However, following optimization, systematic energy consumptions decrease to 4.44 MW, CO,2, emissions are reduced to 0.75 × 10,4, t/a, and the total annual cost decrease to 3.29 × 10,6, CNY/a. This study serves as a reference for the efficient utilization of methyl acetate and the industrial production of ,n,-propyl acetate.
酯交换醋酸正丙酯反应精馏变压精馏技术经济分析
transesterificationn-propyl acetatereactive distillationpressure swing distillationtechno-economic analysis
CHEN H, LI X G, HE L, et al. Energy, exergy, economic, and environmental analysis for methyl acetate hydrolysis process with heat integrated technology used [J]. Energy Conv Manag, 2020, 2161: 12919.
LIU Y, LIU W H, SHAO X M, et al. Kinetics study of the transesterification reaction of methyl acetate with isooctyl alcohol catalyzed by dicationic heteropolyanion-based ionic liquids [J]. Catal Lett, 2018, 148(1): 144-153.
ZHAO Q, LI Y N, LI C, et al. Molecular dynamics-assisted process design and multi-objective optimization for efficient production of n-butyl acetate by reactive-extractive distillation/pervaporation [J]. Sep Purif Technol, 2022, 296: 121427.
宋振兴, 崔现宝, 张缨, 等. 混合离子液体催化反应精馏合成乙酸正己酯[J]. 化工学报, 2021, 72(8): 4155-4165.
LI C L, DUAN C, FANG J, et al. Process intensification and energy saving of reactive distillation for production of ester compounds [J]. Chin J Chem Eng, 2019, 27(6): 1307-1323.
WANG X D, WANG H G, CHEN J Y, et al. High conversion of methyl acetate hydrolysis in a reactive dividing wall column by weakening the self-catalyzed esterification reaction [J]. Ind Eng Chem Res, 2017, 56(32): 9177-9187.
李晨晨, 陆平, 曹俊雅, 等. 二氯二氢硅反歧化反应精馏工艺的模拟分析与控制[J]. 天然气化工—C1化学与化工, 2021, 46(3): 88-93+106.
金浩, 陆佳伟, 汤吉海, 等. 带侧线反应精馏-渗透汽化生产乙酸乙酯集成过程模拟与分析[J]. 化工学报, 2018, 69(8): 3469-3478.
HARVIANTO G R, AHMAD F, LEE M. A thermally coupled reactive distillation and pervaporation hybrid process for n-butyl acetate production with enhanced energy efficiency [J]. Chem Eng Res Des, 2017, 124: 98-113.
KISS A A, JOBSON M, GAO X. Reactive distillation: Stepping up to the next level of process intensification [J]. Ind Eng Chem Res, 2019, 58(15): 5909-5918.
GENG X L, ZHOU H, YAN P, et al. Exergy, economic and environmental analysis of an integrated pressure-swing reactive distillation process for the isobutyl acetate production via methyl acetate transesterification [J]. Process Saf Environ Protect, 2022, 158: 525-536.
RISCO A, PLESU V, HEYDENREICH A J, et al. Pressure selection for non-reactive and reactive pressure-swing distillation [J]. Chem Eng Process, 2019, 135: 9-21.
邵圣娟, 崔泽升, 牛宇岚, 等. 完全热集成变压精馏分离异丙醇-二异丙醚共沸物的优化设计与控制[J]. 低碳化学与化工, 2023, 48(2): 91-99.
SOU X M, YE Q, LI R, et al. The partial heat-integrated pressure-swing reactive distillation process for transesterification of methyl acetate with isopropanol [J]. Chem Eng Process, 2016, 107: 42-57.
ZHANG Z S, ZHANG Q J, LI G J, et al. Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation [J]. Chin J Chem Eng, 2016, 24(11): 1584-1599.
孙诗瑞, 杨傲, 石涛, 等. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10): 4575-4589.
FENG Z M, SHEN W F, RANGAIAH G P, et al. Process development, assessment, and control of reactive dividing-wall column with vapor recompression for producing n-propyl acetate [J]. Ind Eng Chem Res, 2019, 58(1): 276-295.
KIRAN B, JANA A K. Assessing the performance improvement of an intensified heat integration scheme: Reactive pressure-swing distillation [J]. Appl Therm Eng, 2015, 765: 9-20.
HUANG Z X, LI J L, WANG L Y, et al. Novel procedure for the synthesis of dimethyl carbonate by reactive distillation [J]. Ind Eng Chem Res, 2014, 53(8): 3321-3328.
SHEN L L, WANG L, WAN H, et al. Transesterification of methyl acetate with n-propanol: Reaction kinetics and simulation in reactive distillation process [J]. Ind Eng Chem Res, 2014, 53(10): 3827-3833.
ALSALME A, KOZHEVNIKOVA E F, KOZHEVNIKOV I V. Heteropoly acids as catalysts for liquid-phase esterification and transesterification [J]. Appl Catal A-Gen, 2008, 349(1/2): 170-176.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构