1.泉州职业技术大学 福建省清洁能源应用技术协同创新中心,福建 泉州 362268
2.大连海洋大学 海洋科技与环境学院,辽宁 大连 116023
3.中石化(大连)石油化工研究院有限公司,辽宁 大连 116045
吴 爽(1980—),博士,讲师,研究方向为催化吸附材料、生物质热解,E-mail:wushuang@dlou.edu.cn。
王 鑫(1979—),博士,高级工程师,研究方向为催化吸附及生物能源,E-mail:wangxin02.fshy@sinopec.com。
扫 描 看 全 文
吴爽,丁巍巍,刘瑞等.大型海藻微波热解制氢特性研究[J].低碳化学与化工,2024,49(01):119-124.
WU Shuang,DING Weiwei,LIU Rui,et al.Study on characteristics of hydrogen production by microwave-assisted pyrolysis of macroalgae[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):119-124.
吴爽,丁巍巍,刘瑞等.大型海藻微波热解制氢特性研究[J].低碳化学与化工,2024,49(01):119-124. DOI: 10.12434/j.issn.2097-2547.20230195.
WU Shuang,DING Weiwei,LIU Rui,et al.Study on characteristics of hydrogen production by microwave-assisted pyrolysis of macroalgae[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):119-124. DOI: 10.12434/j.issn.2097-2547.20230195.
大型海藻无需耕地、不含难热解的木质素,是降碳减排、生产小分子生物燃料的理想原料。对大型海藻(包括海带、蜈蚣藻、孔石莼和海黍子)进行微波热解,并与落叶松进行对比。研究了微波热解过程的升温行为、气体释放行为及氢气生成曲线,比较了微波热解的产物分布、气体组成和气化指标,进一步利用Ca-Al(CaO-Al,2,O,3,)吸附剂原位吸收海带微波热解产生的二氧化碳(CO,2,),强化海带的定向转化制氢。结果表明,大型海藻比落叶松具有更快的升温行为、更好的制氢效果,尤其海带的氢气产率(16.40 g/kg)为落叶松的3倍。添加Ca-Al吸附剂能够进一步增强海带的微波热解制氢效率,当海带与Ca-Al吸附剂的质量比为1.0:3.0时,氢气产率达到44.24 g/kg,气化效率可达68.57%,气体产物中氢气含量高达77.24%。
Macroalgae does not require arable land and does not contain lignin that is difficult to pyrolysis, which is an ideal raw material for carbon reduction and the production of small molecule biofuels. The microwave-assisted pyrolysis of large seaweed (including kelp, grateloupia livida, ulva pertusa kjellm and sargassum miyabei) was studied and compared with that of larch. The temperature rise behavior, gas release behavior and hydrogen generation curve during microwave-assisted pyrolysis were studied and the product distribution, gas composition and gasification index were compared. Further, Ca-Al (CaO-Al,2,O,3,) sorbent was used to absorb carbon dioxide (CO,2,) generated by microwave-assisted pyrolysis of kelp in situ, and the directed conversion of kelp to hydrogen production was strengthened. The results show that macroalgae had faster heating behavior and better hydrogen production effect than larch, especially the hydrogen yield of kelp (16.40 g/kg) is three times that of larch. The addition of Ca-Al sorbent can further enhance the hydrogen production efficiency of kelp with microwave-assisted pyrolysis. When the mass ratio of kelp to Ca-Al sorbent is 1.0:3.0, the hydrogen yield can reach 44.24 g/kg, and the gasification efficiency reaches 68.57%, the content of hydrogen in the gas product is as high as 77.24%.
Ca-Al吸附剂微波热解海带大型海藻氢气
Ca-Al sorbentmicrowave-assisted pyrolysiskelpmacroalgaehydrogen
KONG L S, TAN X C, GU B H, et al. Significance of achieving carbon neutrality by 2060 on China’s energy transition pathway: A multi-model comparison analysis [J]. Advances in Climate Change Research, 2023, 14(1): 32-42.
DU Z Y, LI Y C, WANG X Q, et al. Microwave-assisted pyrolysis of microalgae for biofuel production [J]. Bioresource Technology, 2011, 102(7): 4890-4896.
ZHU L, LEI H W, WANG L, et al. Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics [J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 149-156.
SABER M, NAKHSHINIEV B, YOSHIKAWA K. A review of production and upgrading of algal bio-oil [J]. Renewable and Sustainable Energy Reviews, 2016, 58: 918-930.
HU Z F, MA X Q, CHEN C X. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae [J]. Bioresource Technology, 2012, 107: 487-493.
MILLEDGE J, SMITH B, DYER P, et al. Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass [J]. Energies, 2014, 7(11): 7194-7222.
FAROBIE O, AMRULLAH A, BAYU A, et al. In-depth study of bio-oil and biochar production from macroalgae Sargassum sp. via slow pyrolysis [J]. RSC advances, 2022, 12(16): 9567-9578.
吴爽, 冯娅婷, 秦智榛, 等. 铁铜钛金属氧化物辅助微波热解角叉菜制气研究[J]. 稀有金属与硬质合金, 2020, 48(3): 54-59.
WU S, FENG Y T, QIN Z Z, et al. Study on gasification of chondrus ocellatus holm by iron/copper/titanium metal oxide assisted microwave pyrolysis [J]. Rare Metals and Cemented Carbides, 2020, 48(3): 54-59.
XIN J L, ONG H C, GAN Y Y, et al. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production [J]. Energy Conversion and Management, 2020, 210: 112707.
HONG Y, CHEN W, LUO X, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production [J]. Bioresource Technology, 2017, 237: 47-56.
STEPHEN J L, PERIYASAMY B. Innovative developments in biofuels production from organic waste materials: A review [J]. Fuel, 2018, 214: 623-633.
DENG W, FENG Y, FU J, et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels [J]. Green Energy & Environment, 2023, 8(1): 10-114.
王鑫. 纤维素微波热解基础研究[J]. 可再生能源, 2015, 33(1): 111-117.
WANG X. Study on microwave-assisted pyrolysis mechanism of cellulose [J]. Renewable Energy Resources, 2015, 33(1): 111-117.
PARVEZA A M, WU T, AFZALB M T, et al. Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production [J]. Fuel Processing Technology, 2019, 184: 1-11.
LI B, MBEUGANG C F M, XIE X, et al. Catalysis/CO2 sorption enhanced pyrolysis-gasification of biomass for H2-rich gas production: Effects of activated carbon, NiO active component and calcined dolomite [J]. Fuel, 2023, 334: 126842.
LIANG S, GUO F, DU S, et al. Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis [J]. Fuel, 2020, 275: 117923.
TORRI C, REINIKAINEN M, LINDFORS C, et al. Investigation on catalytic pyrolysis of pine sawdust: Catalyst screening by Py-GC-MIP-AED [J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(1): 7-13.
赵丽萍, 张彪, 王鑫, 等. 不同种类生物质原料的微波气化性能研究[J]. 太阳能学报, 2021, 42(9): 394-399.
ZHAO L P, ZHANG B, WANG X, et al. Study on gasification performance of different kinds of biomass with microwave heating [J]. Acta Energiae Solaris Sinica, 2021, 42(9): 394-399.
王鑫, 张彪, 赵丽萍, 等. 有氧辅助微波热解落叶松木材的特性及产物分布[J]. 林产化学与工业, 2020, 40(4): 24-32.
WANG X, ZHANG B, ZHAO L P, et al. Oxygen-assisted microwave irradiation pyrolysis characteristics and products distribution of larch [J]. Chemistry and Industry of Forest Products, 2020, 40(4): 24-32.
王昶, 柏龙佳, 刁呈翔. 钾、钙和镁金属盐对生物质热解的影响[J]. 天津科技大学学报, 2015, 30(2): 33-37.
WANG C, BAI L J, DIAO C X. Effect of metallic salts of potassium, calcium and magnesium on biomass pyrolysis [J]. Journal of Tianjin University of Science & Technology, 2015, 30(2): 33-37.
DONMEZ F, AKER V, AYAS N. The evaluation of Ni-Co/Al2O3 via olive pomace pyrolysis to generate hydrogen-rich gas: Experimental and kinetic study [J]. International Journal of Hydrogen Energy, 2022, 47(45): 19538-19554.
郑岩. 煤与生物质共气化过程中钾的迁移及其催化特性[D]. 大连: 大连理工大学, 2017.
ZHENG Y. The migration and catalytic characteristics of potassium during co-pyrolysis/gasification of coal and biomass [D]. Dalian: Dalian University of Technology, 2017.
KOIDO K, KUROSAWA K, ENDO K, et al. Catalytic and inhibitory roles of K and Ca in the pyrolysis and CO2 or steam gasification of Erianthus, and their effects on co-gasification performance [J]. Biomass and Bioenergy, 2021, 154: 106257.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构