浏览全部资源
扫码关注微信
北京石油化工学院 机械工程学院,北京 102617
耿银良(1993—),硕士,研究方向为液氢加注技术,E-mail:gengyinliang1118@163.com。
李建立(1979—),博士,副教授,研究方向为储氢技术及装备,E-mail:lijianli_gz@bipt.edu.cn。
纸质出版日期:2024-02-25,
收稿日期:2023-05-28,
修回日期:2023-06-16,
扫 描 看 全 文
耿银良,李建立,吴小华等.低温液氢加注技术研究进展[J].低碳化学与化工,2024,49(02):105-114.
GENG Yinliang,LI Jianli,WU Xiaohua,et al.Research progress in liquid hydrogen refueling technology[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):105-114.
耿银良,李建立,吴小华等.低温液氢加注技术研究进展[J].低碳化学与化工,2024,49(02):105-114. DOI: 10.12434/j.issn.2097-2547.20230193.
GENG Yinliang,LI Jianli,WU Xiaohua,et al.Research progress in liquid hydrogen refueling technology[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):105-114. DOI: 10.12434/j.issn.2097-2547.20230193.
液氢的安全高效加注是对其进行转移、储存和使用的关键。从加注模式、加注结构和加注工艺等方面综述了国内外液氢加注技术的研究进展。在常重力环境下,有排气和无排气加注均能通过加注结构和工艺的合理设计实现加注目的。典型的无排气顶部加注过程包含初始快速升压、相对稳定加注和末期快速升压3个阶段,而无排气底部加注无明显的阶段性特征。对于常重力加注,不同的顶部加注结构主要影响加注初期接收罐内的压力和温度变化,而不同的底部加注结构还显著影响加注初期的流场特征。不同加注工艺主要通过初始闪蒸、壁面沸腾、液相蒸发、气相冷凝及气相压缩等机制对加注过程产生影响。对于微重力环境下的液氢无排气加注,加注位置和加注结构对加注过程的影响小于不同加注工艺的影响。加注过程中内胆壁面的热变形程度与其冷却程度呈正相关,热应力集中区域不依赖于热变形的分布。为加快实现在更广泛的应用场景下的安全、高效加注液氢,还需进一步深化对加注过程的理论分析、仿真研究和实验研究,同时结合经济性,加强系统性加注工艺流程的仿真研究。
The safe and efficient liquid hydrogen refueling is the key to its transfer
storage and use. The research progress of liquid hydrogen refueling technology at home and abroad was reviewed from three aspects
including refueling modes
refueling structures and refueling processes. In normal gravity environment
both venting and non-venting refueling can be achieved through the rational design of refueling structures and processes. A typical unvented top-refueling process consists of three stages: initial rapid pressure rise
relatively stable refill and final rapid pressure rise
while unvented bottom-refueling has no obvious stage characteristics. For normal gravity refueling
different top-refueling configurations mainly affect the pressure and temperature changes in the receiving tank at the beginning of refueling
while different bottom-refueling configurations also significantly affect the flow field characteristics at the beginning of refueling. Different refueling processes mainly affect the refueling process through the mechanisms of initial flashing
wall boiling
liquid-phase evaporation
gas-phase condensation and gas-phase compression. For liquid hydrogen unvented refueling in a microgravity environment
the influence of refueling location and refueling structure on the refueling process is less than that of different refueling processes. For unvented refueling of liquid hydrogen in a microgravity environment
the effect of refueling location and refueling structure on the refueling process is less than the effect of different refueling processes. The degree of thermal deformation of the liner wall during refueling is positively correlated with its cooling degree
and the region of thermal stress concentration does not depend on the distribution of thermal deformation. In order to accelerate the safe and efficient liquid hydrogen refueling in a wider range of application scenarios
it is necessary to further deepen the theoretical analysis
simulation research and experimental research on the refueling process. At the same time
combined with economic efficiency
the systematic simulation research on the refueling process needs to be strengthened.
液氢加注加注模式加注结构加注工艺
liquid hydrogen refuelingrefueling modesrefueling structuresrefueling processes
凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83.
LING W, LIU W, LI Y L, et al. Development Strategy of Hydrogen Infrastructure Industry in China [J]. Strategic Study of CAE, 2019, 21(3): 76-83.
林文胜, 刘洪茹, 许婧煊. 液氢和液态有机氢载体的氢运输链能效及碳排放[J]. 天然气工业, 2023, 43(2): 131-138.
LIN W S, LIU H R, XU J X. Energy efficiency and carbon emission of hydrogen transportation chain in the mode of liquid hydrogen and liquid organic hydrogen carrier [J]. Natural Gas Industry, 2023, 43(2): 131-138.
SUN Z Y. 11-Hydrogen energy [M]//DUTTA S, MUSTANSAR H C. Sustainable Fuel Technologies Handbook. Academic Press, 2021: 339-365.
SUN Z Y, XU C. Turbulent burning velocity of stoichiometric syngas flames with different hydrogen volumetric fractions upon constant-volume method with multi-zone model [J]. International Journal of Hydrogen Energy, 2020, 45(7): 4969-4978.
DUNN S. Hydrogen futures: Toward a sustainable energy system [J]. International Journal of Hydrogen Energy, 2002, 27(3): 235-264.
全国氢能标准化技术委员会. 氢能汽车用燃料 液氢: GB/T 40045-2021 [S]. 北京: 国家市场监督管理总局, 国家标准化管理委员会, 2021.
National Hydrogen Energy Standardization Technical Committee. Fuel sepcification for hydrogen powered vehicles—Liquid hydrogen (LH2): GB/T 40045-2021 [S]. Beijing: State Administration for Market Regulation, Standardization Administration, 2021.
全国氢能标准化技术委员会. 液氢生产系统技术规范: GB/T 40061-2021 [S]. 北京: 国家市场监督管理总局, 国家标准化管理委员会, 2021.
National Hydrogen Energy Standardization Technical Committee. Technical specification for liquid hydrogen production system: GB/T 40061-2021 [S]. Beijing: State Administration for Market Regulation, Standardization Administration, 2021.
全国氢能标准化技术委员会. 液氢贮存和运输技术要求: GB/T 40060-2021 [S]. 北京: 国家市场监督管理总局, 国家标准化管理委员会, 2021.
National Hydrogen Energy Standardization Technical Committee. Technical requirements for storage and transportation of liquid hydrogen: GB/T 40060-2021 [S]. Beijing: State Administration for Market Regulation, Standardization Administration, 2021.
邹建新. 氢气储存和运输[M]. 北京: 机械工业出版社, 2023.
ZOU J X. Hydrogen storage and transportation [M]. Beijing: Machinery Industry Press, 2023.
刘柏文, 徐元元, 雷刚, 等. 典型低温推进剂的热力学性能参数评估[J]. 火箭推进, 2023, 49(1): 44-53.
LIU B W, XU Y Y, LEI G, et al. Evaluation of thermodynamic performance parameters for typical cryogenic propellant [J]. Journal of Rocket Propulsion, 2023, 49(1): 44-53.
王朝, 邹宏伟, 陈甲楠, 等. 液氮、液氢加注系统数值仿真与试验研究[J]. 太阳能学报, 2022, 43(11): 460-465.
WANG C, ZOU H W, CHEN J N, et al. Numerical simulation and experimental study of liquid nitrogen and liquid hydrogen refueling system [J]. Acta Energiae Solaris Sinica, 2022, 43(11): 460-465.
刘海飞, 陈虹, 王天祥, 等. 液氢和液氧低温推进剂加注系统中的管路瞬变特性研究[J]. 水动力学研究与进展A辑, 2014, 29(6): 642-648.
LIU H F, CHEN H, WANG T X, et al. Study on the transient flow characteristics of the filling pipe of liquid hydrogen/liquid oxygen cryogenic propellants [J]. Chinese Journal of Hydrodynamics, 2014, 29(6): 642-648.
吴文跃. 空间站的在轨推进剂再加注问题[J]. 推进技术, 1988, (2): 50-56+97.
WU W Y. The problem of on-orbit propellant refuelling for space stations [J]. Journal of Propulsion Technology, 1988, (2): 50-56+97.
张振扬, 解辉. 液氢的制、储、运技术现状及分析[J]. 可再生能源, 2023, 41(3): 298-305.
ZHANG Z Y, XIE H. Status quo and analysis of liquid hydrogen production, storage and transportation technology [J]. Renewable Energy Resources, 2023, 41(3): 298-305.
MA Y, ZIMNIK D, DREYER M, et al. Investigation on cryo-wicking performance within metallic weaves under superheated conditions for screen channel liquid acquisition devices (LADs) [J]. International Journal of Heat and Mass Transfer, 2019, 141: 530-541.
WALKER G, FAUVEL R, READER G. Miniature refrigerators for cryogenic sensors and cold electronics [J]. Cryogenics, 1989, 29(8): 841-845.
王彩莉. 低温液体无排放加注特性的理论与实验研究[D]. 上海: 上海交通大学, 2012.
WANG C L. Theoretical and experimental study on the characteristics of emission-free filling of cryogenic liquids [D]. Shanghai: Shanghai Jiaotong University, 2012.
FESTER D A, PAGE G R, BINGHAM P E. Liquid fluorine no-vent loading studies [J]. Journal of Spacecraft and Rockets, 1970, 28(5): 181-185.
CHATO D J. Ground testing on the nonvented fill method of orbital propellant transfer: Results of initial test series [C]//27th Joint Propulsion Conference Exhibit. Sacramento: American Institute of Aeronautics and Astronautics, 1991.
CHATO D J. Ground testing for the no-vent fill of cryogenic tanks: Results of tests for a 71 cubic foot tank [C]//29th Joint Propulsion Conference and Exhibit. Monterey: American Institute of Aeronautics and Astronautics, 1993.
MORAN M E, NYLAND T W, DRISCOLL S L. Hydrogen no-vent fill testing in a 34 liter (1.2 cubic foot) tank [J]. Advances in Cryogenic Engineering, 1992, 37B: 1257-1264.
CHATO D J. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity [C]//24th Joint Propulsion Conference. Sacramento: American Institute of Aeronautics and Astronautics, 1988.
CHATO D J. Analysis of the nonvented fill of a 4.96-cubic-meter lightweight liquid hydrogen tank [C]//27th National Heat Transfer Conference. Philadelphia: American Institute of Aeronautics and Astronautics , 1989.
TAYLOR W J, CHATO D J. Comparing the results of an analytica model of the no-vent fill process with no-vent fill test results for a 4.96 m3 (175 ft3) tank [C]//28th Joint Propulsion Conference and Exhibit. Nashville: American Institute of Aeronautics and Astronautics , 1992.
HEDAYAT A, CARTAGENA W, MAJUMDAR A K, et al. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank [J]. Cryogenics, 2016, 74: 106-112.
LI J C, LIANG G Z. Simulation of mass and heat transfer in liquid hydrogen tanks during pressurizing [J]. Chinese Journal of Aeronautics, 2019, 32(9): 2068-2084.
HONKONEN S C, BENNETT F O, HEPWORTH H K. An analytic model for low-gravity tank chilldown and no-vent fill—The general dynamics no-vent fill program (GDNVF) [C]//26th Thermophysics Conference. Honolulu: American Institute of Aeronautics and Astronautics, 1991.
GILLE J P. Analysis and modeling of no-vent transfer of cryogens in orbi [C]//4th Thermophysics and Heat Transfer Conference. Boston: American Institute of Aeronautics and Astronautics, 2012.
李乐. 推进剂微重力加注稳定性仿真分析[J]. 火箭推进, 2013, 39(4): 41-45.
LI L. Simulation and analysis of propellant refueling stability under low-gravity condition [J]. Journal of Rocket Propulsion, 2013, 39(4): 41-45.
MA Y, LI Y Z, ZHU K, et al. Investigation on no-vent filling process of liquid hydrogen tank under microgravity condition [J]. International Journal of Hydrogen Energy, 2017, 42(12): 8264-8277.
朱康, 厉彦忠, 王磊, 等. 饱和氢气加注过程中低温贮箱降温特性及热应力分布的数值研究[J]. 西安交通大学学报, 2014, 48(5): 1-7.
ZHU K, LI Y Z, WANG L, et al. Investigation on cool-down behavior and thermal stress of cryogenic tank during saturated hydrogen gas filling process [J]. Journal of Xi’an Jiaotong University, 2014, 48(5): 1-7.
ZHANG C J, ZHANG Q Y, ZHU Z G, et al. Numerical simulation of thermal—Structural behaviour of liquid helium tank during filling process [J]. Fusion Engineering and Design, 2021, 173: 112798.
MA Y, ZHU K, LI Y Z, et al. Simulation on chill-down behavior and induced thermal stress of a cryogenic tank during LN2 filling [J]. Applied Thermal Engineering, 2020, 18: 115876.
马原, 朱康, 厉彦忠. 薄壁低温容器加注过程降温及热应力特性研究[J]. 低温工程, 2020, (3): 31-36+42.
MA Y, ZHU K, LI Y Z. Study on cool-down and thermal stress characteristics of thin-walled cryogenic containers during filling process [J]. Cryogenic, 2020, (3): 31-36+42.
ZHU K, LI Y Z, MA Y, et al. Influence of filling methods on the cool down performance and induced thermal stress distribution in cryogenic tank [J]. Applied Thermal Engineering, 2018, 141: 1009-1019.
王彩莉, 汪荣顺, 李阳, 等. 4种不同加注结构在无排放加注中的性能比较[J]. 低温工程, 2008, (5): 35-39+55.
WANG C L, WANG R S, LI Y, et al. Comparison of performance about four different filling configurations in no-vent filling process [J]. Cryogenic, 2008, (5): 35-39+55.
MORAN M E, NYLAND T W. Hydrogen no-vent fill testing in a 5 cubic foot (142 Liter) tank using spray nozzle and spray bar liquid injection [C]//28th Joint Propulsion Conference and Exhibit. Nashville: American Institute of Aeronautics and Astronautics, 1992.
WANG L, LI Y Z, ZHANG F N, et al. Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments [J]. Cryogenics, 2015, 72: 161-171.
马原, 王磊, 孙培杰, 等. 微重力环境低温流体无排气加注过程数值研究[J]. 低温工程, 2017, (4): 7-13+20.
MA Y, WANG L, SUN P J, et al. Numerical investigation of no-vent fill process of cryogens under microgravity condition [J]. Cryogenic, 2017, (4): 7-13+20.
李卓伦, 王磊, 雷刚, 等. 液氢-固空颗粒管流电荷积累与颗粒运动规律研究[J]. 西安交通大学学报, 2023, 57(8): 55-65.
LI Z L, WANG L, LEI G, et al. Study on charge accumulation of solid air particles in liquid hydrogen pipe flow and particles movement performance [J]. Journal of Xi’an Jiaotong University, 2023, 57(8): 55-65.
0
浏览量
333
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构