1.中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580
2.中国石油工程建设有限公司西南分公司,四川 成都 610031
边江(1992—),博士,副教授,研究方向为油气处理及氨氢储运技术,E-mail:bj@upc.edu.cn。
曹学文(1966—),博士,教授,研究方向为天然气与新能源储运、海底油气管道完整性管理,E-mail:caoxw@upc.edu.cn。
扫 描 看 全 文
边江,赵子源,陈俊文等.不同喷管背压下氨气超声速凝结特性[J].低碳化学与化工,2023,48(06):127-133.
BIAN Jiang,ZHAO Ziyuan,CHEN Junwen,et al.Supersonic condensation characteristics of ammonia under different nozzle back pressures[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):127-133.
边江,赵子源,陈俊文等.不同喷管背压下氨气超声速凝结特性[J].低碳化学与化工,2023,48(06):127-133. DOI: 10.12434/j.issn.2097-2547.20230185.
BIAN Jiang,ZHAO Ziyuan,CHEN Junwen,et al.Supersonic condensation characteristics of ammonia under different nozzle back pressures[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):127-133. DOI: 10.12434/j.issn.2097-2547.20230185.
氨分解制氢是“氨-氢”储运产业的重要组成。由于氨的催化分解效率有限,分解气中往往含有未分解的氨气,因此氨气与氢气的分离是必不可少的环节。将超声速旋流分离技术引入“氨-氢”分离领域,建立了考虑氨气非平衡凝结与激波的超声速凝结模型,研究了氨气在Laval喷管内的凝结流动特性,探究了喷管背压对氨气的超声速流动与凝结特性的影响。结果表明,氨气在Laval喷管中高速膨胀,在通过喉部后达到凝结临界状态,在极短的距离内成核并大量凝结,液滴半径和液相质量分数不断增大。激波产生后,过冷度迅速降为负值,凝结液滴开始大量蒸发。在激波串的波节间存在低温区,当过冷度大于0 K时液滴半径小幅增大,但之后又会快速蒸发。当压比(出口背压与进口静压的比值)由0.18增大至0.62,Laval喷管出口处液相质量分数从0.064减小至0,Laval喷管液化效率不断减小直至完全失去液化能力。
Ammonia decomposition to produce hydrogen is an important part of the “ammonia-hydrogen” storage and transportation industry. Due to the limited efficiency of the catalytic decomposition of ammonia, the decomposition gas often contains undecomposed ammonia, so “ammonia-hydrogen” separation is an essential step. Introducing supersonic separation technology to the field of “ammonia-hydrogen” separation, a supersonic condensation model considering the non-equilibrium condensation of ammonia with surge waves was developed, and the condensation flow characteristics of ammonia in Laval nozzles were investigated, and the effects of outlet pressure on the supersonic flow and condensation characteristics of ammonia were explored. The results show that ammonia flows in the Laval nozzles and expands at high velocity, reaching a critical state of condensation after the throat, and nucleates and condenses extensively within a very short distance, and the droplet radius and liquid phase mass fraction continue to increase. After the shock wave occurs, the subcooling rapidly drops to a negative value and the condensed droplets begin to evaporate in large quantities. There is a low temperature zone between between the knots of the surge string. The droplet radius will slightly increase when the subcooling is greater than 0 K, but it will then evaporate rapidly. As the pressure ratio (ratio of outlet back pressure to inlet static pressure) increases from 0.18 to 0.62, the mass fraction of the liquid phase at the Laval nozzle outlet decreases from 0.064 to 0, and the Laval nozzle liquefaction efficiency continues to decrease until it loses its liquefaction capacity completely.
Laval喷管氨气凝结背压激波
Laval nozzlesammoniacondensationback pressureshock wave
AZIZ M, WIJAYANTA A T, NANDIYANTO A B D. Ammonia as effective hydrogen storage: A review on production, storage and utilization [J]. Energies, 2020, 13(12): 3062.
LAMB K E, DOLAN M D, KENNEDY D F. Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification [J]. Int J Hydrogen Energy, 2019, 44(7): 3580-3593.
滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129.
吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33.
LIN L, ZHANG L X, LUO Y, et al. Highly-integrated and cost-efficient ammonia-fueled fuel cell system for efficient power generation: A comprehensive system optimization and techno-economic analysis [J]. Energy Convers Manage, 2022, 251: 114917-114927.
边江, 曹学文, 孙文娟, 等. 气体超声速凝结与旋流分离研究进展[J]. 化工进展, 2021, 40(4): 1812-1826.
BETTING M, EPSOM H D. Supersonic separator gains market acceptance [J]. World Oil, 2007, 254: 197-200.
孙恒 ,朱鸿梅, 舒丹. 3S技术在天然气液化中的应用初探[J]. 低温与超导, 2010, 39(1): 14-16.
HUI M H, ZHOU D, WEN X H, et al. Development and application of a new technique for upscaling miscible processes [J]. Spe Reserv Eval Eng, 2005, 8(3): 189-195.
边江, 曹学文, 杨文, 等. Laval喷管内甲烷-乙烷混合气体低温液化特性[J]. 天然气化工—C1化学与化工, 2018, 43(2): 69-74.
曹学文, 边江, 靳学堂, 等. 三组分气体超声速凝结过程数值模拟与实验研究[J]. 石油学报(石油加工), 2019, 35(1): 99-110.
边江, 杨健, 李玉星, 等. 背压对湿天然气超声速凝结特性影响的数值模拟[J]. 油气储运, 2022, 41(8): 980-986.
LIU Y, CAO X W, GUO D, et al. Influence of shock wave/boundary layer interaction on condensation flow and energy recovery in supersonic nozzle [J]. Energy, 2023, 263: 125662.
KREMMER M, OKUROUNMU O. Condensation of ammonia vapor during rapid expansion [D]. Cambridge: Massachusetts Institute of Technology, 1965.
JAEGER H L, WILLSON E J, HILL P G, et al. Nucleation of supersaturated vapors in nozzles. I. H2O and NH3 [J]. J Chem Phys, 1969, 51(12): 5380-5388.
MATHIEU P. Condensation of ammonia by homogeneous nucleation in supersonic nozzles [J]. Int J Multiphas Flow, 1976, 3(2): 181-195.
HAN X, ZENG W, HAN Z H. Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences [J]. Energy, 2019, 174: 1188-1199.
ZHANG G J, WANG F F, WANG D B, et al. Numerical study of the dehumidification structure optimization based on the modified model [J]. Energy Convers Manage, 2019, 181: 159-177.
WEN C, KARVOUNIS N, WALTHER J H, et al. Non-equilibrium condensation of water vapour in supersonic flows with shock waves [J]. Int J Heat Mass Tran, 2020, 149: 119109.
WEN C, DING H B, YANG Y. Optimisation study of a supersonic separator considering nonequilibrium condensation behavior [J]. Energy Convers Manage, 2020, 222: 113210.
GYARMATHY G. The spherical droplet in gaseous carrier streams: Review and synthesis [J]. Multiph Sci Technol, 1982, 1(1): 99-279.
MULERO A, CACHADIÑA I, PARRA M I. Recommended correlations for the surface tension of common fluids [J]. J Phys Chem Ref Data, 2012, 41(4): 169-451.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构