1.成都信息工程大学 资源环境学院,四川 成都 610225
2.西安交通大学 能源与动力工程学院,陕西 西安 710049
3.成都理工大学 材料与化学化工学院,四川 成都 610059
陈雯婧(1993—),博士,副教授,研究方向为二氧化碳吸收剂及纳米功能材料开发,E-mail:cwj@cuit.edu.cn。
扫 描 看 全 文
陈雯婧, 彭璨, 张虹, 等. 微胶囊型CO2固体吸收剂的研究进展[J]. 低碳化学与化工, 2023,48(5):71-81.
CHEN Wenjing, PENG Can, ZHANG Hong, et al. Research progress of microcapsule solid absorbent for CO2 capture[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):71-81.
陈雯婧, 彭璨, 张虹, 等. 微胶囊型CO2固体吸收剂的研究进展[J]. 低碳化学与化工, 2023,48(5):71-81. DOI: 10.12434/j.issn.2097-2547.20230177.
CHEN Wenjing, PENG Can, ZHANG Hong, et al. Research progress of microcapsule solid absorbent for CO2 capture[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):71-81. DOI: 10.12434/j.issn.2097-2547.20230177.
微胶囊型二氧化碳(CO,2,)固体吸收剂(MECS)是一种极具发展潜力的新型CO,2,吸收剂,相比于传统化学吸收剂,MECS具有比表面积大、CO,2,吸收速率快、吸收剂不易损失、设备紧凑且腐蚀性弱的优点。主要介绍了基于MECS的CO,2,捕集技术的基本原理,从芯体和壳体材料两个方面对MECS种类及制备方法进行了归纳总结,重点阐述了MECS在碳捕集研究中的CO,2,吸收容量、吸收速率、选择性及再生性能等重要参数以及其规模化应用评价。分析认为,当前MECS研究还处于试验阶段,要实现规模化应用,今后工作还需聚焦于材料设计开发、智能可控的制备方法构建以及碳捕集工艺优化等问题的研究。
Microencapsulated carbon dioxide (CO,2,) solid absorbents (MECS) is a novel CO,2, absorption with considerable development potential. Compared with traditional chemical absorbent, MECS has many advantages including larger specific surface area, fast CO,2, absorption rate, less loss of absorption, compact equipment and weak corrosiveness. The basic principles of CO,2, capture process based on MECS were introduced, and the types and preparation methods of MECS were summarized from two aspects of core and shell materials. The important parameters such as CO,2, absorption capacity, absorption rate, selectivity and regeneration performance of MECS in carbon capture research and the evaluation of its large-scale application were emphasized. According to the analysis, it is believed that the current research on MECS is still in the experimental stage, and to achieve large-scale application, future work should focus on material design, intelligent and controllable preparation method construction, carbon capture process optimization and so on.
固体吸收剂CO2化学吸收法微胶囊CO2捕集
solid absorbentCO2 chemical absorption methodmicrocapsuleCO2 capture
ZHENG X S, STREIMIKIENE D, BALEZENTIS T, et al. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players [J]. J Cleaner Prod, 2019, 234: 1113-1133.
KONG L S, TAN X C, GU B H, et al. Significance of achieving carbon neutrality by 2060 on China’s energy transition pathway: A multi-model comparison analysis [J]. Adv Clim Change Res, 2023, 14(1): 32-42.
SUO C, LI Y P, NIE S, et al. Analyzing the effects of economic development on the transition to cleaner production of China’s energy system under uncertainty [J]. J Cleaner Prod, 2021, 279: 123725.
米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9): 2537-2544.
陆诗建, 黄凤敏, 李清方, 等. 燃烧后CO2捕集技术与工程进展[J]. 现代化工, 2015, 35(6): 48-52.
BUDZIANOWSKI W M. Explorative analysis of advanced solvent processes for energy efficient carbon dioxide capture by gas-liquid absorption [J]. Inter J Greenhouse Gas Control, 2016, 49: 108-120.
KHAN U, OGBAGA C C, ABIODUN O A O, et al. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview [J]. Carbon Capture Sci Technol, 2023, 8: 100125.
BRAAKHUIS L, KNUUTILA H K. Predicting solvent degradation in absorption-based CO2 capture from industrial flue gases [J]. Chem Eng Sci, 2023, 279: 118940.
DE MEYER F, JOUENNE S. Industrial carbon capture by absorption: Recent advances and path forward [J]. Curr Opin Chem Eng, 2022, 38: 100868.
CONVERSANO A, PORCU A, MUREDDU M, et al. Bench-scale experimental tests and data analysis on CO2 capture with potassium prolinate solutions for combined cycle decarbonization [J]. Inter J Greenhouse Gas Control, 2020, 93: 102881.
FYTIANOS G, GRIMSTVEDT A, KNUUTILA H, et al. Effect of MEA’s degradation products on corrosion at CO2 capture plants [J]. Energy Procedia, 2014, 63: 1869-1875.
ZENG S, ZHANG X, BAI L, et al. Ionic-liquid-based CO2 capture systems: Structure, interaction and process [J]. Chem Rev, 2017, 117(14): 9625-9673.
SMITH K, XIAO G, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy Fuels, 2014, 28(1): 299-306.
HORNBOSTEL K, NGUYEN D, BOURCIER W, et al. Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution [J]. Appl Energy, 2019, 235: 1192-1204.
MOORE T, MUMFORD K A, STEVENS G W, et al. Enhancement in specific absorption rate by solvent microencapsulation [J]. AIChE J, 2018, 64(11): 4066-4079.
VERICELLA J J, BAKER S E, STOLAROFF J K, et al. Encapsulated liquid sorbents for carbon dioxide capture [J]. Nat Commun, 2015, 6(1): 6124.
LEMUS J, DA SILVA F F A, PALOMAR J, et al. Solubility of carbon dioxide in encapsulated ionic liquids [J]. Sep Purifi Technol, 2018, 196: 41-46.
STOLAROFF J K, YE C, OAKDALE J S, et al. Microencapsulation of advanced solvents for carbon capture [J]. Faraday Discuss, 2016, 192: 271-281.
NISAR M, BERNARD F L, DUARTE E, et al. New polysulfone microcapsules containing metal oxides and ([Bmim][NTf2]) ionic liquid for CO2 capture [J]. J Environ Chem Eng, 2021, 9(1): 104781.
ROMANOS G E, SCHULZ P S, BAHLMANN M, et al. CO2 capture by novel supported ionic liquid phase systems consisting of silica nanoparticles encapsulating amine-functionalized ionic liquids [J]. J Phys Chem C, 2014, 118(42): 24437-24451.
PALOMAR J, LEMUS J, ALONSO M N, et al. Encapsulated ionic liquids (ENILs): From continuous to discrete liquid phase [J]. Chem Commun, 2012, 48(80): 10046-10048.
WEISS E, GERTOPSKI D, GUPTA M K, et al. Encapsulation of ionic liquid BMIm[PF6] within polyurea microspheres [J]. React Funct Polym, 2015, 96: 32-38.
CHEN D X, OUYANG X K, WANG Y G, et al. Adsorption of caprolactam from aqueous solution by novel polysulfone microcapsules containing [Bmim][PF6] [J]. Colloids Surf A, 2014, 441: 72-76.
KALIVA M, ARMATAS G S, VAMVAKAKI M. Microporous polystyrene particles for selective carbon dioxide capture [J]. Langmuir, 2012, 28(5): 2690-2695.
KNIPE J M, CHAVEZ K P, HORNBOSTEL K M, et al. Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling [J]. Environ Sci Technol, 2019, 53(5): 2926-2936.
NABAVI S A, VLADISAVLJEVIĆ G T, GU S, et al. Semipermeable elastic microcapsules for gas capture and sensing [J]. Langmuir, 2016, 32(38): 9826-9835.
MOYA C, ALONSO-MORALES N, GILARRANZ M A, et al. Encapsulated ionic liquids for CO2 capture: Using 1-butyl-methylimidazolium acetate for quick and reversible CO2 chemical absorption [J]. ChemPhysChem, 2016, 17(23): 3891-3899.
STOLAROFF J K, YE C, NGUYEN D T, et al. CO2 Absorption kinetics of micro-encapsulated ionic liquids [J]. Energy Procedia, 2017, 114: 860-865.
MOYA C, ALONSO-MORALES N, DE RIVA J, et al. Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO2 capture: Preserving the favorable thermodynamics and enhancing the kinetics of absorption [J]. J Phys Chem B, 2018, 122(9): 2616-2626.
YEW M, REN Y, KOH K S, et al. Synthesis of microcapsules for carbon capture via needle-based droplet microfluidics [J]. Energy Procedia, 2019, 160: 443-450.
BERNARD F L, DUARTE E A, POLESSO B B, et al. CO2 sorption using encapsulated imidazolium-based fluorinated ionic liquids [J]. Environ Challenges, 2021, 4: 100109.
GAUR S S, EDGEHOUSE K J, KLEMM A, et al. Capsules with polyurea shells and ionic liquid cores for CO2 capture [J]. J Polym Sci, 2021, 59(23): 2980-2989.
WANG P, ZHU J, TANG J, et al. Morphology and CO2 adsorption performance of novel ionic liquid microcapsules containing [Bmim][PF6] [J]. Chem Eng Res Des, 2022, 187: 633-644.
POLESSO B B, DUCZINSKI R, BERNARD F L, et al. New water-based nanocapsules of poly(diallyldimethylammonium tetrafluoroborate)/ionic liquid for CO2 capture [J]. Heliyon, 2023, 9(2): e13298.
KOUAMé K J E-P, BORA A F M, LI X, et al. Novel trends and opportunities for microencapsulation of flaxseed oil in foods: A review [J]. J Funct Foods, 2021, 87: 104812.
郭帅, 王昊乾, 徐鹏飞, 等. 真空低温喷雾干燥制备乳双歧杆菌Probio-M8微胶囊[J]. 中国食品学报, 2021, 21(12): 164-172.
HELBLING I M, BUSATTO C A, KARP F, et al. An analysis of the microencapsulation of ceftiofur in chitosan particles using the spray drying technology [J]. Carbohydr Polym, 2020, 234: 115922.
熊鹏, 罗丹, 裴响林, 等. 微胶囊碳酸氢钠合成工艺及热分解特性的研究[J]. 高分子通报, 2021, (2): 38-45.
刘春杰. 离子液体微胶囊的制备及其在连续萃取中的应用[D]. 沈阳: 辽宁大学, 2021.
PERIGNON C, ONGMAYEB G, NEUFELD R, et al. Microencapsulation by interfacial polymerisation: Membrane formation and structure [J]. J Microencapsulation, 2015, 32(1): 1-15.
LUO Q, WANG Y, CHEN Z, et al. Pickering emulsion-templated encapsulation of ionic liquids for contaminant removal [J]. ACS Appl Mater Interfaces, 2019, 11(9): 9612-9620.
WANG D, YU W, GAO M, et al. A 3D microfluidic device for carbon capture microcapsules production [C]//Proceedings of the 2018 IEEE micro electro mechanical systems, UK: Belfast, 2018: 21-25.
YU W, WANG T, PARK A H A, et al. Toward sustainable energy and materials: CO2 capture using microencapsulated sorbents [J]. Ind Eng Chem Res, 2020, 59(21): 9746-9759.
RAKSAJATI A, HO M T, WILEY D E. Techno-economic evaluation of CO2 capture from flue gasesusing encapsulated solvent [J]. Ind Eng Chem Res, 2017, 56(6): 1604-1620.
WANG H M, ZHU J M, TAN L, et al. Encapsulated ionic liquids for CO2 capture [J]. Mater Chem Phys, 2020, 251: 122982.
SANTIAGO R, LEMUS J, MORENO D, et al. From kinetics to equilibrium control in CO2 capture columns using encapsulated ionic liquids (ENILs) [J]. Chem Eng J, 2018, 348: 661-668.
AVELAR BONILLA G M, MORALES-COLLAZO O, BRENNECKE J F. Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids [J]. ACS Sustainable Chem Eng, 2019, 7(19): 16858-16869.
严红芳, 朱佳媚, 谷行, 等. 咪唑类离子液体微胶囊的CO2吸附和扩散行为[J]. 应用化工, 2019, 48(1): 5-9.
FINN J R, GALVIN J E, HORNBOSTEL K. CFD investigation of CO2 absorption/desorption by a fluidized bed of micro-encapsulated solvents [J]. Chem Eng Sci X, 2020, 6: 100050.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构