1.中国石油大学(北京)克拉玛依校区 工学院,新疆 克拉玛依 834000
2.中国石油大学(北京) 机械与储运 工程学院,北京 102249
3.中国石油大学(北京) 化学工程与环境学院 北京 102249
徐 振(1994—),博士,讲师,研究方向为水合物防治,E-mail:xuzhen@cup.edu.cn。
孙 强(1981—),博士,教授,研究方向为气体分离,E-mail:sunq@cup.edu.cn。
扫 描 看 全 文
徐振,戴泽利,王逸伟等.甲烷-水合物两相平衡体系气相水含量研究[J].低碳化学与化工,2024,49(01):113-118.
XU Zhen,DAI Zeli,WANG Yiwei,et al.Study on gas-phase water content in methane-hydrate phase equilibrium[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):113-118.
徐振,戴泽利,王逸伟等.甲烷-水合物两相平衡体系气相水含量研究[J].低碳化学与化工,2024,49(01):113-118. DOI: 10.12434/j.issn.2097-2547.20230176.
XU Zhen,DAI Zeli,WANG Yiwei,et al.Study on gas-phase water content in methane-hydrate phase equilibrium[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):113-118. DOI: 10.12434/j.issn.2097-2547.20230176.
天然气中的微量气态水在天然气开采、集输过程中可能与气体小分子形成水合物,造成管路堵塞,因此需要对天然气进行脱水处理。为了合理设计天然气最大容许水含量参数,准确测量和计算天然气-水合物相平衡时的气相水含量具有重要意义。在压力为3.44~6.00 MPa、温度为270.00~274.00 K的条件下,通过实验测量和模型预测研究了甲烷-水合物相平衡时的气相水含量。结果表明,相比于压力露点,常压露点和气相水含量体积比随温度和压力的变化都具有规律性,气相水含量随温度的降低和压力的升高而减小。在实验的基础上,基于热力学相平衡理论建立了甲烷-水合物相平衡时的气相水含量热力学模型,气相水含量体积比的模型预测值与实验值的平均相对偏差为2.33%。该实验方法实现了甲烷-水合物相平衡体系气相水含量的原位测量,建立的热力学模型相比于通过查图获得的甲烷-液态水相平衡时的饱和水含量再外推至水合物区的方法更快速和准确。
In the process of natural gas extraction and transportation, the presence of trace amounts of gaseous water may lead to hydrate formation with small gas molecules, resulting in pipeline blockages, so it is necessary to remove water from natural gas through dehydration. To establish appropriate parameters for the maximum permissible water content in natural gas, it is crucial to measure and calculate the gas-phase water content in gas-hydrate phase equilibrium accurately. Under the conditions of pressure from 3.44 MPa to 6.00 MPa and temperature from 270.00 K to 274.00 K, the gas-phase water content of methane-hydrate phase equilibrium was studied by experimental measurements and model predictions. The results show that compared with pressure dew point, atmospheric dew point and gas-phase water content volume ratio change regularly with temperature and pressure. Gas-phase water content decreases with the decrease of temperature and the increase of pressure. On the basis of experiments, a thermodynamic model of gas-phase water content in methane-hydrate phase equilibrium was established based on thermodynamic phase equilibrium theory. The average relative deviation between the predicted values and experimental values is 2.33%. This method achieves in situ measurement of gas-phase water content in methane-hydrate phase equilibrium system, and the established model is faster and more accurate than the method of obtaining the saturated water content in methane-liquid water phase equilibrium by looking up the diagram and extrapolating to the hydrate zone.
水合物甲烷相平衡气相水含量热力学模型
hydratemethanephase equilibriumgas phase water contentthermodynamic model
LI S L, ZHANG G B, DAI Z X, et al. Concurrent decomposition and replacement of marine gas hydrate with the injection of CO2-N2 [J]. Chemical Engineering Journal, 2021, 420: 129936.
王东. 联用型水合物促进剂对甲烷水合物生成过程的影响规律研究[J]. 低碳化学与化工, 2023, 48(2): 149-154.
WANG D. Study on influence of combined hydrate promoter on formation process of methane hydrate [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 149-154.
刘煌,李瑞景,汪周华, 等.酸性天然气生成水合物条件实验测定与应用[J]. 特种油气藏, 2021, 28(5): 154-160.
LIU H, LI R J, WANG Z H, et al. Experimental determination and application of hydrate formation conditions for sour natural gas [J]. Special Oil & Gas Reservoirs, 2021, 28(5): 154-160.
蔺嘉昊, 孟海龙, 郭永强, 等. 气井节流生产过程中天然气水合物生成风险模拟研究[J]. 非常规油气, 2023, 10(2): 88-93+106.
LIN J H, MENG H L, GUO Y Q, et al. Simulation study on the risk of gas hydrate formation in the process of gas well throttling production [J]. Unconventional Oil & Gas, 2023, 10(2): 88-93+106.
PEI J H, WANG Z Y, ZHANG J B, et al. Prediction model and risk analysis of hydrate deposition and blockage in reduced-diameter pipelines [J]. Fuel, 2023, 337: 127071.
樊栓狮, 郭凯, 王燕鸿, 等.天然气水合物动力学抑制剂性能评价方法的现状与展望[J]. 天然气工业, 2018, 38(9): 103-113.
FAN S S, GUO K, WANG Y H, et al. Present situation and prospect of performance evaluation methods for kinetic hydrate inhibitors (KHIs) [J]. Natural Gas Industry, 2018, 38(9): 103-113.
ZOU X, ZI M C, WU T T, et al. Synthesis and evaluation investigation of novel kinetic hydrate inhibitors at high subcooling conditions [J]. Fuel, 2023, 341: 127014.
周文瑞, 周诗岽, 秦天成, 等. 含蜡量对二氧化碳水合物浆液流动及堵塞特性的影响[J]. 天然气化工—C1化学与化工, 2022, 47(3): 81-87.
ZHOU W R, ZHOU S D, QIN T C, et al. Effect of wax content on flow and blockage characteristics of carbon dioxide hydrate slurry [J]. Natural Gas Chemical Industry, 2022, 47(3): 81-87.
ALASSI A, BURGASS R, CHAPOY A. Water content measurements for liquid propane in equilibrium with water or hydrates: New measurements & evaluation of literature data [J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104732.
陈佳羽, 马维龙, 赵盼婷, 等. 天然气脱水工艺发展现状及趋势[J]. 石油化工应用, 2023, 42(2): 8-10.
CHEN J Y, MA W L, ZHAO P T, et al. Development status and trend of natural gas dehydration process [J]. Petrochemical Industry Application, 2023, 42(2): 8-10.
RASOOLZADEH A, BAKHTYARI A, MEHRABI K, et al. Determination of clathrate hydrates dissociation conditions in the presence of gas dehydration, sweetening, and other nitrogenated additives using a predictive thermodynamic approach [J]. Journal of Natural Gas Science and Engineering, 2022, 107: 104773.
KONDOEI J, JAVANMARDI J, ESLAMIMANESH A, et al. Thermodynamic consistency test for isobaric experimental data of water content of methane [J]. Fluid Phase Equilibria, 2013, 347: 54-61.
SLOAN E D,KHOURY F M, KOBAYASHI R. Water content of methane gas in equilibrium with hydrates [J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(4): 318-323.
SONG K Y, YARRISON M, CHAPMAN W. Experimental low temperature water content in gaseous methane, liquid ethane, and liquid propane in equilibrium with hydrate at cryogenic conditions [J]. Fluid Phase Equilibria, 2004, 224(2): 271-277.
CHAPOY A, HAGHIGHI H, BURGASS R, et al. Gas hydrates in low water content gases: Experimental measurements and modelling using the CPA equation of state [J]. Fluid Phase Equilibria, 2010, 296(1): 9-14.
ISTOMIN V A, DEREVYAGIN A M, SELEZNEV S V, et al. Kinetics and thermodynamics of supercooled water and gas hydrates by dew point experimental technique [C]// Process of 5th International Conference on Gas Hydrates. Trondhein: Tapair Academic Press, 2005: 193-200.
BURGASS R, CHAPOY A, FILHO V O C. Development of a new method for measurement of the water dew/frost point of gas [J]. Fluid Phase Equilibria, 2021, 530: 112873.
VAN DER WAALS J H, PLATTEEUW J C. Clathrate solutions [J]. Advances in Chemical Physics, 1958, 2: 1-57.
PARRISH W R, PRAUSNITZ J M. Dissociation pressures of gas hydrates formed by gas mixtures [J]. IEC Chemical Process Design and Development, 1972, 11(1): 26-35.
REDLICH O, KWONG J N S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions [J]. Chemical Reviews, 1949, 44(1): 233-244.
SALMAN M, ZHANG L L, CHEN J F. A computational simulation study for techno-economic comparison of conventional and stripping gas methods for natural gas dehydration [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2285-2293.
RUBAIEE S. High sour natural gas dehydration treatment through low temperature technique: Process simulation, modeling and optimization [J]. Chemosphere, 2023, 320: 138076.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构