浏览全部资源
扫码关注微信
西安石油大学 石油工程学院 陕西省油气田特种增产技术重点实验室,陕西 西安 710065
肖荣鸽(1978—),博士,教授,研究方向为天然气处理与加工、油气水多相流理论与应用研究,E-mail:xiaorongge@163.com。
纸质出版日期:2024-02-25,
收稿日期:2023-05-03,
修回日期:2023-06-05,
扫 描 看 全 文
肖荣鸽,刘亚龙,庞琳楠等.联产LNG天然气低温-膜分离提氦工艺模拟设计[J].低碳化学与化工,2024,49(02):80-88.
XIAO Rongge,LIU Yalong,PANG Linnan,et al.Simulation design of process of low-temperature and membrane separation for helium extraction and LNG co-production from natural gas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):80-88.
肖荣鸽,刘亚龙,庞琳楠等.联产LNG天然气低温-膜分离提氦工艺模拟设计[J].低碳化学与化工,2024,49(02):80-88. DOI: 10.12434/j.issn.2097-2547.20230163.
XIAO Rongge,LIU Yalong,PANG Linnan,et al.Simulation design of process of low-temperature and membrane separation for helium extraction and LNG co-production from natural gas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):80-88. DOI: 10.12434/j.issn.2097-2547.20230163.
为了解决传统提氦工艺单位能耗高、提氦效率低和经济成本高等问题,对天然气低温-膜分离提氦工艺和联产液化天然气(LNG)的天然气低温提氦工艺进行了分析,结合各工艺的优势,设计了联产LNG天然气低温-膜分离提氦工艺。使用Aspen HYSYS软件对3种工艺的装置综合能耗、氦气回收率、氦气含量(体积分数,下同)进行了模拟计算。结果表明,装置在最低操作温度为-188.3 ℃的情况下,联产LNG天然气低温-膜分离提氦工艺的氦气回收率最高(99.99%),提取氦气含量最高(99.95%),LNG产量为678.4 kmol/h,LNG液化率为94.6%。与天然气低温-膜分离提氦工艺和联产LNG天然气低温提氦工艺的相应运行参数相比,联产LNG天然气低温-膜分离提氦工艺压缩机总能耗降低了12.68%,装置综合能耗降低了18.75%。最终建立的联产LNG天然气低温-膜分离提氦工艺可以有效提高氦气回收率和纯度,降低了能耗和投资成本,实现了能量最大化利用,同时可以生产出两种产品(精氦和LNG)。
In order to solve the problems of high energy consumption
low helium extraction efficiency and high economic cost of traditional helium extraction process
the process of low-temperature and membrane separation for helium extraction from natural gas and the process of low-temperature helium extraction and LNG co-production from natural gas were analyzed. Combined with the advantages of each process
the process of low-temperature and menbrane separtion for helium extraction and LNG co-production from natural gas was designed. Aspen HYSYS software was used to simulate the comprehensive energy consumption
helium recovery rate and helium content (volume fraction
the same as below) of the three processes. The results show that the helium recovery rate of the process of low-temperature and membrane separation for helium extraction and LNG co-production from natural gas is the highest when the condition of the minimum operating temperature is -188.3 ℃
which can reach 99.99%. The extracted helium content is the highest (up to 99.95%)
and LNG production is 678.4 kmol/h
and LNG liquefaction rate is 94.6%. Compared with the operational parameters of the process of low-temperature and membrane separation for helium extraction from natural gas and the process of low-temperature helium extraction and LNG co-production from natural gas
the total compressor energy consumption of the process of low-temperature and membrane separation for helium extraction and LNG co-production from natural gas is reduced by 12.68%
and the comprehensive energy consumption of the device is reduced by 18.75%. The final process of low-temperature and membrane separation for helium extraction and LNG co-production from natural gas can effectively improve helium recovery rate and purity
reduce energy consumption and investment costs
maximize energy utilization
and produce two products (refined helium and LNG) at the same time.
天然气低温-膜分离提氦联产LNG工艺模拟
natural gaslow-temperature and membrane separationhelium extractionLNG co-productionprocess simulation
汪澎, 章学华, 赵俊. 工业废氦气提纯技术探讨[J]. 低温与超导, 2013, 41(8): 83-88.
WANG P, ZHANG X H, ZHAO J. Study on the purification process of helium exhausted from the industry [J]. Cryogenics & Superconductivity, 2013, 41(8): 83-88.
郝旭平. 关于我国氦气资源立法保护问题的建议[J]. 石油与天然气化工, 2009, 38(5): 393-395+366.
HAO X P. Discuss on the domestic legislation protection for helium gas resource [J]. Chemical Engineering of Oil & Gas, 2009, 38(5): 393-395+366.
张宁, 胡忠军, 李青. 全球氦供求形势及其回收利用[J]. 低温与特气, 2010, 28(6): 1-6.
ZHANG N, HU Z J, LI Q. Global supply and demand situation and the recovery of helium [J]. Low Temperature and Specialty Gases, 2010, 28(6): 1-6.
唐文俊. 从世界氦形势看我国氦的未来[J]. 天然气工业, 1986, 6(4): 96-100.
TANG W J. The future of helium in China from the world helium situation [J]. Natural Gas Industry, 1986, 6(4): 96-100.
王熙庭, 任庆生. 氦资源、应用、市场和提取技术[J]. 天然气化工—C1化学与化工, 2012, 37(1): 73-78.
WANG X T, REN Q S. Helium resources, applications, markets and extraction technologies [J]. Natural Gas Chemical Industry, 2012, 37(1): 73-78.
张良聪. 天然气提氦膜深冷耦合工艺研究[D]. 大连: 大连理工大学, 2013.
ZHANG L C. Research on membrane separation-cryogenic hybrid process for helium extraction from natural gas [D]. Dalian: Dalian University of Technology, 2013.
KAMMERZELL J. Helium to move from byproduct to primary drilling target [J]. Rigzone, 2011.
MEHRPOOYA M, SHAFAEI A. Advanced exergy analysis of novel flash based helium recovery from natural gas processes [J]. Energy, 2016, 114: 64-83.
李长俊, 张财功, 贾文龙, 等. 天然气提氦技术开发进展[J]. 天然气化工—C1化学与化工, 2020, 45(4): 108-116.
LI C J, ZHANG C G, JIA W L, et al. Progress in technologies for helium-extraction from natural gas [J]. Natural Gas Chemical Industry, 2020, 45(4): 108-116.
施林圆, 马剑林. LNG液化流程及管道输送工艺综述[J]. 天然气与石油, 2010, 28(5): 37-40.
SHI L Y, MA J L. Review of LNG liquefaction process and pipeline transportation technology [J]. Natural Gas and Oil, 2010, 28(5): 37-40.
吴兴, 梁文清, 郑晓红. 提氦过程的低温膜分离性能分析[J]. 制冷技术, 2018, 38(6): 1-7.
WU X, LIANG W Q, ZHENG X H. Analysis of performance of cryogenic membrane separation in helium extraction process [J]. Chinese Journal of Refrigeration Technology, 2018, 38(6): 1-7.
李均方, 何琳琳, 柴露华. 天然气提氦技术现状及建议[J]. 石油与天然气化工, 2018, 47(4): 41-44.
LI J F, HE L L, CHAI L H. Present situation and suggestion of helium extraction from natural gas [J]. Chemical Engineering of Oil & Gas, 2018, 47(4): 41-44.
马国光, 杜双. 天然气提氦与制LNG结合工艺分析[J]. 化学工程, 2019, 47(1): 74-78.
MA G G, DU S. Analysis on the combination process of natural gas helium extraction and LNG production [J]. Chemical Engineering (China), 2019, 47(1): 74-78.
荣杨佳, 王成雄, 赵云昆, 等. 天然气轻烃回收与提氦联产工艺[J]. 天然气工业, 2021, 41(5): 127-135.
RONG Y J, WANG C X, ZHAO Y K, et al. Co-production process of light hydrocarbon recovery and helium extraction from natural gas [J]. Natural Gas Industry, 2021, 41(5): 127-135.
卢衍波. 膜法天然气提氦技术研究进展[J]. 石油化工, 2020, 49(5): 513-518.
LU Y B. Research progress of extracting helium from natural gas with membrane separation [J]. Petrochemical Technology, 2020, 49(5): 513-518.
王宁宁. 浅谈膜分离技术在石油炼化循环氢提纯中的应用[J]. 化工管理, 2019, (31): 91-92.
WANG N N. Application of membrane separation technology in hydrogen purification in petroleum refining cycle [J]. Chemical Engineering Management, 2019, (31): 91-92.
PETROPOULOS J H. Mechanisms and theories for sorption and diffusion of gases in polymers [J]. Polymeric gas separation membranes, 1994, 4: 110-121.
李传峰, 钟顺和. 无机膜的气体传递机理和模型[J]. 膜科学与技术, 2000, 20(3): 33-37.
LI C F, ZHONG S H. Gas transfer mechanism and model of inorganic membrane [J]. Membrane Science and Technology, 2000, 20(3): 33-37.
郑佩君, 谢威, 白菊, 等. 气体分离膜技术在天然气提氦中的研究进展[J]. 膜科学与技术, 2022, 42(6): 168-177.
ZHENG P J, XIE W, BAI J, et al. Research progress and prospect of membrane gas separation technology for helium recovery from natural gas [J]. Membrane Science and Technology, 2022, 42(6): 168-177.
SCHOLES C A, GOSH U K, HO M T. The economics of helium separation and purification by gas separation membranes [J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 5014-5020.
HAMEDI H, KARIMI I A, GUNDERSEN T. A novel cost-effective silica membrane-based process for heliumextraction from natural gas [J]. Computers & Chemical Engineering, 2019, 121(2): 633-638.
HAMEDI H, KARIMI I A, GUNDERSEN T. Optimization of helium extraction processes integrated with nitrogen removal units: A comparative study [J]. Computers & Chemical Engineering, 2019, 121(1): 354-366.
张丽萍, 巨永林. 天然气及液化天然气蒸发气提氦技术研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(5): 32-41.
ZHANG L P, JU Y L. Research progress of helium extraction of natural gas and liquefied natural gas boil-off gas [J]. Natural Gas Chemical Industry, 2022, 47(5): 32-41.
杜双. 天然气低温提氦工艺优化研究[D]. 成都: 西南石油大学, 2019.
DU S. Study on optimization of low temperature helium extraction process from natural gas [D]. Chengdu: Southwest Petroleum University, 2019.
赵敏, 厉彦忠. 丙烷预冷混合冷剂液化流程中原料气与制冷剂匹配研究[J]. 西安交通大学学报, 2010, 44(2): 108-112.
ZHAO M, LI Y Z. Analysis for selecting mixed refrigerant composition based on raw natural gas in propane pre-cooled mixed refrigerant liquefaction process [J]. Xi’an Jiaotong University Xuebao, 2010, 44(2): 108-112.
施林圆. 马剑林. LNG液化流程及管道输送工艺综述[J]. 天然气与石油, 2010, 28(5): 37-40.
SHI L Y, MA J L. Review of LNG liquefaction process and pipeline transportation technology [J]. Natural Gas and Oil, 2010, 28(5): 37-40.
DAI Z, DENG J, HE X, et al. Helium separationg using membrane technology: Recent advances and perspectives [J]. Separation and Purification Technology, 2021, 274: 1190044.
PIROUZFAR V, HOSSEINI S S, OMIDKHAH M R, et al. Modeling and optimization of gas transport characteristics of carbon molecular sieve membranes through statistical analysis [J]. Polymer Engineering & Science, 2014, 54(1): 147-157.
CHOI J I, JUNG C H, HAN S H, et al. Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity [J]. Journal of Membrane Science, 2010, 349(1/2): 358-368.
LAGUNTSOV N I, KURCHATOV I M, KARASEVA M D, et al, Influence of membraane selectivity on helium recovery from natural gas [J]. Petroleum Chemistry, 2016, 56(4): 344-348.
QUADER M A, RUFFORD T E, SMART S, Modeling and cost analysis of helium recovery using combined-mem-brane process configurationgs [J]. Separation and Purification Technology, 2020, 236: 116269.
QUADER M A. Techno-economic evaluation of multistage membrane combinations using three different materials to recover helium from natural gas [M]//Computer Aided Chemical Engineering.San Diego, California, USA: Elsevier, 2018, 44: 1201-1206.
0
浏览量
292
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构