辽宁工业大学 化学与环境工程学院,辽宁 锦州 121001
侯人玮(1993—),硕士,实验师,研究方向为异相催化,E-mail:hourenwei@lnut.edu.cn。
冯效迁(1993—),博士,副教授,研究方向为异相催化,E-mail:fengxq@lnut.edu.cn。
扫 描 看 全 文
侯人玮,柳圣华,冯效迁.CH4-CO2重整反应用Ni基合金催化剂研究进展[J].低碳化学与化工,2023,48(06):1-9.
HOU Renwei,LIU Shenghua,FENG Xiaoqian.Research progress on Ni-based alloy catalysts in CH4-CO2 reforming reaction[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):1-9.
侯人玮,柳圣华,冯效迁.CH4-CO2重整反应用Ni基合金催化剂研究进展[J].低碳化学与化工,2023,48(06):1-9. DOI: 10.12434/j.issn.2097-2547.20230141.
HOU Renwei,LIU Shenghua,FENG Xiaoqian.Research progress on Ni-based alloy catalysts in CH4-CO2 reforming reaction[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):1-9. DOI: 10.12434/j.issn.2097-2547.20230141.
CH,4,-CO,2,重整反应可以将CH,4,和CO,2,两种温室气体转化为理论上,n,(H,2,)/,n,(CO) = 1的合成气,对于高效利用天然气资源和实现双碳目标具有重要意义。该反应常用的Ni基催化剂因其成本低、活性高,具备良好的应用潜力,但较为严重的烧结和积炭问题使其容易失活,稳定性至今无法达到工业化要求。通过在Ni中添加另一种金属形成合金是一种有效地提升Ni基催化剂稳定性的方法。为了加深对Ni基合金催化剂在CH,4,-CO,2,反应中作用机制的认识,并对今后研究提供指导,对近年来Ni基合金CH,4,-CO,2,催化剂的研究进展进行了综述。适量的贵金属(Ru、Pt和Rh等)或非贵金属(Co、Fe和Cu等)掺杂均可有效提升Ni基催化剂的抗烧结和抗积炭能力。贵金属一方面本身具有优秀的活性和稳定性,另一方面可改变Ni基催化剂的表面微观性质,发挥协同作用;非贵金属则大部分本身不具备显著催化活性,主要通过形成合金改变Ni的表面性质,进而影响还原或反应过程的机理。总结得到提升Ni 基合金稳定性的机理包括:通过占据Ni台阶位抑制CH,4,裂解,改变Ni金属原子电子云密度调控CH,4,和CO,2,吸附的活化能从而促进表面积炭的氧化消除,抑制烧结从而提高活性金属分散度,通过改变表面原子结构特征抑制积炭形核等,而对于Ni基合金表面微观结构特征和影响因素的深入理解是未来重要的研究方向。
CH,4,-CO,2, reforming reaction can convert two greenhouse gases, CH,4, and CO,2, into syngas with a theoretical ,n,(H,2,)/,n,(CO) = 1, which is of great significance for the efficient utilization of natural gas resources and the realization of the two-carbon goal. Commonly used Ni-based catalysts for this process have good application potential due to their low cost and high activity. However, serious sintering and carbon deposits problems make them easy to be inactivated, and their stability cannot meet the industrial requirements. Adding another metal to Ni is an effective way to enhance the stability of Ni-based catalysts. In order to deepen the understanding of the mechanism of Ni-based alloy catalysts in the CH,4,-CO,2, reaction and provide guidance for future research, the research progress of Ni-based alloy CH,4,-CO,2, catalysts in recent years was reviewed. It is found that an appropriate amount of noble metals (Ru, Pt, Rh, etc.) or non-noble metals (Co, Fe, Cu, etc.) doping can effectively improve the sintering and carbon deposits resistance of Ni-based catalysts. On the one hand, noble metals themselves have excellent activity and stability, and on the other hand, they can also change the surface microscopic properties of Ni-based catalysts and play a synergistic role. Most of the non-noble metals themselves do not have significant catalytic activity, and mainly change the surface properties of Ni by forming alloys, thereby affecting the mechanism of reduction or reaction process. The mechanisms of improving the stability of Ni-based alloys are summarized as follows: inhibiting CH,4, cracking by occupying the Ni step, adjusting the activation energy of CH,4, and CO,2, adsorption by changing the density of Ni metal atom electron clouds to promote the oxidation elimination of surface carbon, inhibiting sintering to improve the dispersity of active metals and inhibiting the nucleation of carbon deposits by changing the characteristics of surface atomic structure, etc. A deeper understanding of the surface microstructure characteristics and influencing factors of Ni-based alloys is an important research direction in the future.
甲烷二氧化碳Ni基合金催化剂稳定性
methanecarbon dioxideNi-based alloyscatalystsstability
TOLLEFSON J. World looks ahead post-Copenhagen [J]. Nature, 2009, 462(7276): 966-967.
TOLLEFSON J. Copenhagen: The scientists’ view [J]. Nature, 2009, 462(7274): 714-715.
British Petroleum Plc. BP statistical review of world energy 2020 [R]. London: British Petroleum Plc, 2020.
GAO W L, LIANG S Y, WANG R J, et al. Industrial carbon dioxide capture and utilization state of the art and future challenges [J]. Chem Soc Rev, 2020, 49(23): 8584-8686.
PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts [J]. Chem Soc Rev, 2014, 43(22): 7813-7837.
张鹏, 张晴, 刘静, 等. 甲烷干气重整镍基复合结构催化剂的研究进展[J]. 无机材料学报, 2018, 33(9): 931-941.
WANG C S, WANG Y S, CHEN M Q, et al. Recent advances during CH4 dry reforming for syngas production: A mini review [J]. Int J Hydrogen Energ, 2021, 46(7): 5852-5874.
YENTEKAKIS I V, PANAGIOTOPOULOU P, ARTEMAKIS G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations [J]. Appl Catal B, 2021, 296: 120210.
ABDULRASHEED A, JALIL A A, GAMBO Y, et al. A review on catalyst development for dry reforming of methane to syngas: Recent advances [J]. Renew Sust Energ Rev, 2019, 108: 175-193.
LE SACHÉ E, REINA T R. Analysis of dry reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies [J]. Prog Energ Combust, 2022, 89: 100970.
KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane [J]. ChemSusChem, 2015, 8(21): 3556-3575.
GUHAROY U, REINA T R, LIU J, et al. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts [J]. J CO2 Util, 2021, 53: 101728.
LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane [J]. ChemCatChem, 2011, 3(3): 529-541.
AKRI M, ZHAO S, LI X, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J]. Nat Commun, 2019, 10(1): 5181.
ABDEL KARIM ARAMOUNI N, ZEAITER J, KWAPINSKI W, et al. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation [J]. Energ Convers Manage, 2017, 150: 614-622.
MOULIJN J A, VAN DIEPEN A E, KAPTEIJN F. Catalyst deactivation: Is it predictable?: What to do? [J]. Appl Catal A, 2001, 212(1/2): 3-16.
JIN B, LI S G, LIANG X H. Enhanced activity and stability of MgO-promoted Ni/Al2O3 catalyst for dry reforming of methane: Role of MgO [J]. Fuel, 2021, 284: 119082.
MARINHO A L A, TONIOLO F S, NORONHA F B, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane [J]. Appl Catal B, 2021, 281: 119459.
KONG W B, FU Y, SHI L, et al. Nickel nanoparticles with interfacial confinement mimic noble metal catalyst in methane dry reforming [J]. Appl Catal B, 2021, 285: 119837.
KÖPFLE N, GÖTSCH T, GRÜNBACHER M, et al. Zirconium-assisted activation of palladium to boost syngas production by methane dry reforming [J]. Angew Chem Int Ed, 2018, 57(44): 14613-14618.
ZHANG T T, LIU Z X, ZHU Y A, et al. Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics [J]. Appl Catal B, 2020, 264: 118497.
GARCÍA-DIÉGUEZ M, PIETA I S, HERRERA M C, et al. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane [J]. J Catal, 2010, 270(1): 136-145.
GARCÍA-DIÉGUEZ M, FINOCCHIO E, LARRUBIA M Á, et al. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane [J]. J Catal, 2010, 274(1): 11-20.
NIU J, WANG Y, E. LILAND S E, et al. Unraveling enhanced activity, selectivity, and coke resistance of Pt-Ni bimetallic clusters in dry reforming [J]. ACS Catal, 2021, 11(4): 2398-2411.
ZHOU H B, ZHANG T T, SUI Z J, et al. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification [J]. Appl Catal B, 2018, 233: 143-159.
ÁLVAREZ MORENO A, BOBADILLA BALADRÓN L F, GARCILASO V, et al. CO2 reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study [J]. J CO2 Util, 2018, 24: 509-515.
ZHANG Y, WANG G C. Significant effect of Rh on the h-BN-supported Ni catalyst for dry reformation of CH4: Insights from density functional theory and microkinetic analysis [J]. J Phy Chem C, 2021, 125(48): 26530-26541.
MOZAMMEL T, DUMBRE D, HUBESCH R, et al. Carbon dioxide reforming of methane over mesoporous alumina supported Ni(Co), Ni(Rh) bimetallic, and Ni(CoRh) trimetallic catalysts: Role of nanoalloying in improving the stability and nature of coking [J]. Energ Fuel, 2020, 34(12): 16433-16444.
THEOFANIDIS S A, PIETERSE J A Z, POELMAN H, et al. Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming [J]. Appl Catal B, 2020, 267: 118691.
MAO Y R, ZHANG L Z, ZHENG X J, et al. Coke-resistance over Rh-Ni bimetallic catalyst for low temperature dry reforming of methane [J]. Int J Hydrogen Energ, 2023, 48: 13890-13901.
PAN C, GUO Z L, DAI H, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane [J]. Int J Hydrogen Energ, 2020, 45(32): 16133-16143.
MA Q Y, SUN J, GAO X H, et al. Ordered mesoporous alumina-supported bimetallic Pd-Ni catalysts for methane dry reforming reaction [J]. Catal Sci Technol, 2016, 6(17): 6542-6550.
HUANG Y, LI X, ZHANG Q, et al. Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures [J]. Fuel Process Technol, 2022, 237: 107446.
LI H C, HAO C, TIAN J Q, et al. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination [J]. Chem Catal, 2022, 2(7): 1748-1763.
HORVÁTH A, GUCZI L, KOCSONYA A, et al. Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane [J]. Appl Catal A, 2013, 468: 250-259.
YU M J, ZHU Y A, LU Y, et al. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction [J]. Appl Catal B, 2015, 165: 43-56.
CICHY M, PAŃCZYK M, SŁOWIK G, et al. Ni-Re alloy catalysts on Al2O3 for methane dry reforming [J]. Int J Hydrogen Energ, 2022, 47(37): 16528-16543.
ZUBENKO D, SINGH S, ROSEN B A. Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming [J]. Appl Catal B, 2017, 209: 711-719.
ÁLVAREZ MORENO A, RAMIREZ-REINA T, IVANOVA S, et al. Bimetallic Ni-Ru and Ni-Re catalysts for dry reforming of methane: Understanding the synergies of the selected promoters [J]. Front Chem, 2021, 9: 694976.
ZHANG J G, WANG H, DALAI A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. J Catal, 2007, 249(2): 300-310.
TURAP Y, WANG I, FU T T, et al. Co-Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane [J]. Int J Hydrogen Energ, 2020, 45(11): 6538-6548.
HORLYCK J, LAWREY C, LOVELL E C, et al. Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane [J]. Chem Eng J, 2018, 352: 572-580.
XIAO Z R, WU C, WANG L, et al. Boosting hydrogen production from steam reforming of ethanol on nickel by lanthanum doped ceria [J]. Appl Catal B, 2021, 286: 119884.
LYU L, SHENGENE M, MA Q X, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane [J]. Fuel, 2022, 310: 122375.
WU T, CAI W Y, ZHANG P, et al. Cu-Ni@SiO2 alloy nanocomposites for methane dry reforming catalysis [J]. RSC Adv, 2013, 3(46): 23976-23979.
WU T, ZHANG Q, CAI W, et al. Phyllosilicate evolved hierarchical Ni- and Cu-Ni/SiO2 nanocomposites for methane dry reforming catalysis [J]. Appl Catal A, 2015, 503: 94-102.
SONG K, LU M M, XU S P, et al. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane [J]. Appl Catal B, 2018, 239: 324-333.
QIU H Y, RAN J Y, NIU J T, et al. Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: A DFT study [J]. Mol Catal, 2021, 502: 111360.
THEOFANIDIS S A, GALVITA V V, POELMAN H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe [J]. ACS Catal, 2015, 5(5): 3028-3039.
WAN C S, SONG K, PAN J H, et al. Ni-Fe/Mg(Al)O alloy catalyst for carbon dioxide reforming of methane: Influence of reduction temperature and Ni-Fe alloying on coking [J]. Int J Hydrogen Energ, 2020, 45(58): 33574-33585.
JOO S W, KIM K, KWON O H, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane [J]. Angew Chem Int Ed, 2021, 60(29): 15912-15919.
CHATLA A, ABU-RUB F, PRAKASH A V, et al. Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn [J]. Fuel, 2022, 308: 122042.
ROSSET M, FÉRIS L A, PEREZ-LOPEZ O W. Biogas dry reforming using Ni-Al-LDH catalysts reconstructed with Mg and Zn [J]. Int J Hydrogen Energ, 2021, 46(39): 20359-20376.
GUHAROY U, LE SACHÉ E, CAI Q, et al. Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane [J]. J CO2 Util, 2018, 27: 1-10.
DA SILVA F A R, DOS SANTOS R C R, NUNES R S, et al. Role of tin on the electronic properties of Ni/Al2O3 catalyst and its effect over the methane dry reforming reaction [J]. Appl Catal A, 2021, 618: 118129.
SONG Y, OZDEMIR E, RAMESH S, et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO [J]. Science, 2020, 367(6479): 777-781.
ZHANG X Y, DENG J, PUPUCEVSKI M, et al. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane [J]. ACS Catal, 2021, 11(19): 12087-12095.
HUANG W, WEI C, LI Y, et al. The role of Mo species in Ni-Mo catalysts for dry reforming of methane [J]. Phys Chem Chem Phys, 2022, 24(35): 21461-21469.
FENG X Q, LIU J, ZHANG P, et al. Highly coke resistant Mg-Ni/Al2O3 catalyst prepared via a novel magnesiothermic reduction for methane reforming catalysis with CO2: The unique role of Al-Ni intermetallics [J]. Nanoscale, 2019, 11(3): 1262-1272.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构