1.中冶南方工程技术有限公司,湖北 武汉 430223
龚奂彰(1995—),硕士,工程师,研究方向为钢铁行业碳捕集技术,E-mail:ghz54@sina.com。
扫 描 看 全 文
龚奂彰, 黄秀玉. 钢铁行业碳捕集技术的典型应用[J]. 低碳化学与化工, 2023,48(5):103-108.
GONG Huanzhang, HUANG Xiuyu. Typical application of carbon capture technology in steel industry[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):103-108.
龚奂彰, 黄秀玉. 钢铁行业碳捕集技术的典型应用[J]. 低碳化学与化工, 2023,48(5):103-108. DOI: 10.12434/j.issn.2097-2547.20230119.
GONG Huanzhang, HUANG Xiuyu. Typical application of carbon capture technology in steel industry[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):103-108. DOI: 10.12434/j.issn.2097-2547.20230119.
碳捕集技术是一项创新且直接有效的碳减排措施,对于钢铁行业实现“碳中和”目标具有重要意义。概述了化学吸收法、物理吸收法、物理吸附法以及膜分离法4种主要碳捕集技术的原理、优缺点、国内应用案例,以及常见的吸收剂、吸附剂和膜材料。综述了国内外钢铁行业典型碳捕集技术的开发应用情况,包括采用化学吸收法的新日铁住金公司ESCAP工艺、浦项钢铁公司氨水化学吸收工艺和新疆八一钢铁股份有限公司醇胺化学吸收工艺,以及采用物理吸附法的JFE钢铁公司变压吸附(PSA)工艺、首钢京唐钢铁联合有限责任公司变温吸附(TSA)+ PSA工艺。钢铁行业应用碳捕集技术,在开发低温再生吸收剂、低腐蚀性吸收剂,提高物理吸附法效率,降低捕集成本等方面取得了一定进展,但依然处于初级阶段。为更好地推进碳捕集技术的大规模商业化应用,结合钢铁行业特点提出了几点建议。
Carbon capture technology is an innovative and directly effective carbon emissions reduction measure, holding significant importance for the steel industry's pursuit of “carbon neutrality”. An overview of four major carbon capture methods is provided, such as chemical absorption, physical absorption, physical adsorption and membrane separation. Their principles, advantages, disadvantages, domestic application cases, and common absorbents, adsorbents, and membrane materials are discussed. A summary of the development and application status of typical carbon capture technologies in the steel industry is also provided, including the chemical absorption methods such as the ESCAP process developed by Nippon Steel & Sumitomo Metal Corporation, the ammonia water chemical absorption process by Pohang Iron & Steel Company, and the alkanolamine chemical absorption process by Xinjiang BAYI Iron & Steel Co., Ltd., and physical absorption methods such as the pressure swing adsorption (PSA) process by JFE Steel Corporation and the temperature swing adsorption (TSA) + PSA process by Shougang Jingtang Iron and Steel Integrated Co., Ltd.. The steel industry has made certain progress in developing low-temperature regenerative absorbents and low-corrosive absorbents, improving the efficiency of physical adsorption methods, and reducing capture costs. However, the application of carbon capture technology in the steel industry is still at the early stage. To better promote the large-scale commercial application of carbon capture technology, several recommendations are proposed based on the unique characteristics of the steel industry.
钢铁行业碳捕集化学吸收法物理吸附法开发应用
steel industrycarbon capturechemical absorptionphysical adsorptiondevelopment and application
IEA. Data and statistics [EB/OL]. (2022-01-10)[2023-02-01]. https://www.iea.org/data-and-statisticshttps://www.iea.org/data-and-statistics.
上官方钦, 刘正东, 殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究[J]. 中国冶金, 2021, 31(9): 15-20.
毛艳丽, 曲余玲, 李博, 等. 钢厂烟气CO2捕捉技术的开发及其应用前景分析[J]. 钢铁, 2016, 51(8): 6-10.
杨菲, 王风, 陆诗建, 等. MEA二元复合胺溶液对CO2吸收的研究进展[J]. 低碳化学与化工, 2023, 48(1): 156-163.
鲁博文, 张立麒, 徐勇庆, 等. 碳捕集、利用与封存(CCUS)技术助力碳中和实现[J]. 工业安全与环保, 2021, 47(S1): 30-34.
梁锋. 碳中和目标下碳捕集、利用与封存(CCUS)技术的发展[J]. 能源化工, 2021, 42(5): 19-26.
步学朋. 二氧化碳捕集技术及应用分析[J]. 洁净煤技术, 2014, (5): 9-13.
惠武卫, 姬存民, 赵合楠, 等. 低浓度CO2捕集技术研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 19-24+98.
HEDIN N, ANDERSSON L, BERGSTRÖM L, et al. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption [J]. Appl Energ, 2013, 104: 418-433.
DRAGE T C, SNAPE C E, STEVENS L A, et al. Materials challenges for the development of solid sorbents for post-combustion carbon capture [J]. J Mater Chem, 2012, 22(7): 2815-2823.
ZOU X, ZHU G. Microporous organic materials for membrane-based gas separation [J]. Adv Mater, 2018, 30(3): 1700750.
MA Z, QIAO Z, WANG Z, et al. CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups [J]. RSC Adv, 2014, 4(41): 21313-21317.
KRISHNA R, BATEN J. A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks [J]. Seo Purif Technol, 2012, 87: 120-126.
AARON D, TSOURIS C. Separation of CO2 from flue gas: A review [J]. Sep Sci Technol, 2011, 40(1/2/3): 321-348.
邹庆峰, 刘鹏南, 田果. 八钢欧冶炉冶金煤气碳捕集技术应用[J]. 新疆钢铁, 2021, (2): 1-3.
王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2): 1-7+106.
河北省生态环境厅. 关于发布《河北省低碳技术推广目录(2020年)》的公告[EB/OL]. (2021-08-30)[2023-02-01]. http://hbepb.hebei.gov.cn/hbhjt/zwgk/fdzdgknr/zdlyxxgk/ydqhbh/101612659092627.htmlhttp://hbepb.hebei.gov.cn/hbhjt/zwgk/fdzdgknr/zdlyxxgk/ydqhbh/101612659092627.html.
膜法捕集二氧化碳示范装置通过测试[J]. 膜科学与技术, 2022, 42(1): 56.
新日铁住金公司. ESCAP: 高性能CO2回收装置[EB/OL]. (2022-01-10)[2023-02-05]. https://www.eng.nipponsteel.com/https://www.eng.nipponsteel.com/.
新日铁住金公司. ESCAP商业订单[EB/OL]. (2022-01-10)[2023-02-05]. https://www.eng.nipponsteel.com/https://www.eng.nipponsteel.com/.
罗晔, 王超. 韩国浦项制铁公司的CO2捕集与封存技术[J]. 环境保护与循环经济, 2016, (12): 5.
CHANG H R, KIM J Y, HAN K, et al. Process analysis for ammonia-based CO2 capture in ironmaking industry [J]. Energy Proc, 2011, 4(1): 1486-1493.
季书民, 邹庆峰, 高斌. 一种欧冶炉煤气脱CO2装置: 210885964U [P]. 2020-06-30.
SAIMA H, MOGI Y, HARAOKA T. Development of PSA system for the recovery of carbon dioxide and carbon monoxide from blast furnace gas in steel works [J]. Energy Procedia, 2013, 37(1): 7152-7159.
SAIMA H, MOGI Y, HARAOKA T. Development of PSA technology for the separation of carbon dioxide from blast furnace gas [J]. JFE Tech Report, 2014, (19): 133-138.
首钢集团. 京唐: 坚持科技创新引领低碳发展[EB/OL]. (2021-08-30)[2023-02-01]. https://www.shougang.com.cn/sgweb/html/lsdt/20210830/6724.htmlhttps://www.shougang.com.cn/sgweb/html/lsdt/20210830/6724.html.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构