1.大连理工大学 化工学院 精细化工国家重点实验室,智能材料化工前沿科学中心,辽宁 大连 116024
赵玉(1997—),硕士研究生,研究方向为分子筛合成与应用,E-mail: zhaoyu22045208@mail.dlut.edu.cn。
张安峰(1978—),博士,副教授,研究方向为分子筛合成与应用,E-mail:zhangaf@dlut.edu.cn;
郭新闻(1967—),博士,教授,研究方向为分子筛合成与应用、二氧化碳催化转化,E-mail:guoxw@dlut.edu.cn。
扫 描 看 全 文
赵玉, 张嘉兴, 王明瑞, 等. Ni@Silicalite-1催化剂的制备及其催化CO2加氢制CH4与CO性能研究[J]. 低碳化学与化工, 2023,48(5):38-45.
ZHAO Yu, ZHANG Jiaxing, WANG Mingrui, et al. Research on preparation of Ni@Silicalite-1 catalyst and its catalytic performance in hydrogenation of CO2 to CH4 and CO[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):38-45.
赵玉, 张嘉兴, 王明瑞, 等. Ni@Silicalite-1催化剂的制备及其催化CO2加氢制CH4与CO性能研究[J]. 低碳化学与化工, 2023,48(5):38-45. DOI: 10.12434/j.issn.2097-2547.20230105.
ZHAO Yu, ZHANG Jiaxing, WANG Mingrui, et al. Research on preparation of Ni@Silicalite-1 catalyst and its catalytic performance in hydrogenation of CO2 to CH4 and CO[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):38-45. DOI: 10.12434/j.issn.2097-2547.20230105.
采用沸石封装策略,合成了用于CO,2,加氢反应的结构可控的Ni基催化剂,选择性获得CH,4,或CO产物。采用SiO,2,纳米球和Silicalite-1(S-1)分子筛作为载体,通过浸渍-再晶化的方法合成了一系列不同载量的Ni/X@S-1催化剂(X为SiO,2,或S-1分子筛)。SEM结果表明,S-1分子筛作为载体时,其导向作用有利于后续再晶化形成S-1包覆层,在较低模板剂四丙基氢氧化铵(TPAOH)加入量(,n,(TPAOH)/,n,(SiO,2,) = 0.1)的情况下即可实现S-1分子筛对Ni物种的封装,且封装的金属催化剂外表面平整,呈现规则的六边形板状结构。大分子液相加氢实验与能谱分析结果表明,Ni物种主要分布在S-1分子筛的内部。原位XRD分析和H,2,-TPR结果表明,S-1分子筛限域封装Ni有效增强了NiO与载体间的相互作用,抑制了NiO向金属Ni的还原(Ni,0,),有利于构筑稳定的NiO相。CO,2,加氢反应结果表明,不经H,2,-预还原,主要活性相为NiO的催化剂(N-5.0% Ni/S-1@S-1)的CO选择性为96.4%;经过400 ℃ H,2,-预还原处理,活性相为Ni,0,的催化剂(R-5.0% Ni/S-1@S-1)的CH,4,的选择性超过98.0%。NiO为生成CO的活性相,而Ni,0,为生成CH,4,的活性相,通过调控催化剂预还原温度,可以有效控制活性Ni物种的价态组成,进而实现加氢产物CO与CH,4,的选择性生成。
Using zeolite-encapsulated strategy, the Ni-based catalysts with controllable structure was synthesized for the hydrogenation of CO,2, to selectively obtain CH,4, or CO. SiO,2, nanospheres and silicalite-1 (S-1) zeolite molecular sieves were used as carriers to synthesize a series of Ni/X@S-1 catalysts with various Ni loadings by impregnation-recrystallization method (X is SiO,2, or S-1 zeolite molecular). SEM results show that S-1 molecular sieves as the carrier is conducive to the subsequent crystallization to form the S-1 cladding layer, and when the amount of template agent tetra-propylammonium hydroxide (TPAOH) added is low (,n,(TPAOH)/,n,(SiO,2,) = 0.1), the Ni-species could be encapsulated by S-1 zeolite molecular sieves, and the outer surface of encapsulated metal catalysts is flat, exhibiting a regular hexagonal plate morphology. Experimental results of macromolecules liquid phase hydrogenation and energy spectrum analysis reveal that the Ni species are mainly distributed inside S-1 zeolite molecular sieves. The results of in situ XRD and H,2,-TPR indicate that the encapsulation of S-1 zeolite molecular sieves effectively enhances the interaction between NiO and carriers, inhibit the reduction of NiO towards metallic Ni (Ni,0,), which is beneficial to stable NiO phases. The results of CO,2, hydrogenation indicate that without H,2, pre-reduction, the CO selectivity of the main active phase of NiO (N-5.0% Ni/S-1@S-1) is 96.4%. After 400 ℃ H,2, pre-reduction, the CH,4, selectivity of the main active phase of Ni,0, (R-5.0% Ni/S-1@S-1) is over 98.0%. NiO is the active phase for the formation of CO, while Ni,0, is the active phase for the formation of CH,4,. The valence composition of active Ni species can be well controlled by tuning pre-reduction temperature to realize the selective generation of hydrogenation products CO and CH,4,.
CO2加氢Ni基催化剂分子筛封装原位XRD活性结构
CO2 hydrogenationNi-based catalystzeolite encapsulationin situ XRDactive structure
RA E C, KIM K Y, KIM E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives [J]. ACS Catal, 2020, 10: 11318-11345.
WANG J Y, ZHANG G H, ZHU J, et al. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development [J]. ACS Catal, 2021, 11: 1406-1423.
赵云鹏, 荆涛, 田景芝, 等. CO2 甲烷化催化剂与反应机理研究进展[J]. 天然气化工—C1 化学与化工, 2016, 41(6): 98-104.
付豪, 廉红蕾. CO2甲烷化反应路径的研究进展[J]. 燃料化学学报, 2022, 51(4): 1-16.
ZHANG Z T, SHEN C Y, SUN K H, et al. Advances in studies of the structural effects of supported Ni catalysts for CO2 hydrogenation: From nanoparticle to single atom catalyst [J]. J Mater Chem A, 2022, 10(11): 5792-5812.
ZHANG Q, GAO S Q, YU J H. Metal sites in zeolites: Synthesis, characterization, and catalysis [J]. Chem Rev, 2023, 123(9): 6039-6106.
WANG C T, GUAN E J, WANG L, et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation [J]. J Am Chem Soc, 2019, 141: 8482-8488.
YANG Y J, ZHANG J C, LIU J, et al. Nickel nanoparticles encapsulated in SSZ-13 cage for highly efficient CO2 hydrogenation [J]. Energy Fuels, 2021, 35(16): 13240-13248.
MIAO C, SHANG K X, LIANG L X, et al. Efficient and stable Ni/ZSM-5@MCM-41 catalyst for CO2 methanation [J]. ACS Sustain Chem Eng, 2022, 10: 12771-12782.
LIU M H, CHEN H A, CHEN C S, et al. Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for CO2 methanation [J]. Nanoscale, 2019, 11(43): 20741-20753.
HONGMANOROM P, ASHOK J, CHIRAWATKUL P, et al. Interfacial synergistic catalysis over Ni nanoparticles encapsulated in mesoporous ceria for CO2 methanation [J]. Appl Catal B, 2021, 297: 120454.
CHEN H H, GOODARZI F, MU Y B, et al. Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation [J]. Appl Catal B, 2020, 272: 119013.
ZHANG B F, SONG M X, LIU H W, et al. Role of Ni species in ZnO supported on Silicalite-1 for efficient propane dehydrogenation [J]. Chinese J Chem Eng, 2022, 43(3): 240-247.
STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range [J]. J Colloid Interf Sci, 1968, 26: 62-69.
LEI X, YU B, CONG H L, et al. Synthesis of monodisperse silica microspheres by a modified Stöber method [J]. Integr Ferroelectr, 2014, 154: 142-146.
FUJITSUKA H, KOBAYASHI T, TAGO T. Development of silicalite-1-encapsulated Ni nanoparticle catalyst from amorphous silica-coated Ni for dry reforming of methane: Achieving coke formation suppression and high thermal stability [J]. J CO2 Util, 2021, 53: 101707.
XU S S, SLATER T J A, HUANG H, et al. Developing silicalite-1 encapsulated Ni nanoparticles as sintering-/coking-resistant catalysts for dry reforming of methane [J]. Chem Eng J, 2022, 446: 137439.
WU H C, CHANG Y C, WU J H, et al. Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: The influence of particle size on selectivity and reaction pathway [J]. Catal Sci Technol, 2015, 5(8): 4154-4163.
GALHARDO T S, BRAGA A H, ARPINI B H, et al. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts [J]. J Am Chem Soc, 2021, 143(11): 4268-4280.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构