1.中国天辰工程有限公司 天津 300400
2.天津大学 分子+研究院 天津 300110
刘大李(1991—),博士,高级工程师,研究方向为工业催化及碳资源高效转化,E-mail:liudali@cntcc.cn。
于一夫(1986—),博士,教授,研究方向为环境催化与能源催化,E-mail:yyu@tju.edu.cn。
扫 描 看 全 文
刘大李,王聪,刘新伟等.用于二氧化碳捕集的化学吸收剂研究进展[J].低碳化学与化工,2024,49(01):94-104.
LIU Dali,WANG Cong,LIU Xinwei,et al.Research advances in chemical absorbents for carbon dioxide capture[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):94-104.
刘大李,王聪,刘新伟等.用于二氧化碳捕集的化学吸收剂研究进展[J].低碳化学与化工,2024,49(01):94-104. DOI: 10.12434/j.issn.2097-2547.20230101.
LIU Dali,WANG Cong,LIU Xinwei,et al.Research advances in chemical absorbents for carbon dioxide capture[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):94-104. DOI: 10.12434/j.issn.2097-2547.20230101.
近年来,在全球大力推进碳中和的背景之下,碳捕集、利用与封存(CCUS)技术的发展进入“快车道”。在整个CCUS产业链条中,碳捕集既是首要环节也是重要节点。常用的碳捕集方法有化学吸收法、膜分离法和物理吸附法等,其中化学吸收法被认为是目前最有市场应用前景的二氧化碳捕集技术,但高能耗与高成本限制了其大规模发展。目前化学吸收法的研究重点主要集中于吸收剂的优化,以降低能耗。对近年来报道的多种化学吸收剂进行了分析和总结,主要聚焦各类化学吸收剂的吸收性能、吸收机理、优缺点和增强途径等方面,并对其未来发展前景进行了展望,以对高效化学吸收剂的开发提供借鉴。
In recent years, under the background of global efforts to promote carbon neutrality, the development of carbon capture, utilization and storage (CCUS) technology has entered the “fast lane”. In the whole CCUS industry chain, carbon capture is both the first link and an important node. The commonly used carbon capture methods include chemical absorption method, membrane separation method and physical adsorption method, among which chemical absorption method is considered to be the most promising carbon dioxide capture technology at present, but high energy consumption and high cost limit its large-scale development. At present, the research of chemical absorption method mainly focuses on the optimization of absorbents to reduce energy consumption. Various chemical absorbents that have been reported in recent years were analyzed and summarized, mainly focusing on the absorption performance, absorption mechanism, advantages and disadvantages, and enhancement pathways, and their future development prospects were prospected, so as to provide reference for the development of high efficiency chemical absorbents.
二氧化碳碳捕集化学吸收法吸收剂燃烧后捕集
carbon dioxidecarbon capturechemical absorption methodabsorbentpost-combustion capture
STRECK C, KEENLYSIDE P, VONUNGER M. The paris agreement: A new beginning [J]. Journal for European Environmental & Planning Law, 2016, 13(1): 3-29.
HASAN M F, FIRST E L, BOUKOUVALA F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU [J]. Computers & Chemical Engineering, 2015, 81: 2-21.
ZHANG S H, SHEN Y, WANG L D, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges [J]. Applied Energy, 2019, 239:876-897.
OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: A review [J]. Environmental Chemistry Letters, 2021, 19(1): 77-109.
刘炳成, 武鲁航, 董西宝, 等. 多种有机胺吸收剂循环利用实验研究[J]. 化工科技, 2017, 25(4): 20-25.
LIU B C, WU L H, DONG X B, et al. Experimental study on cyclic utilization of several alcohol amine absorbents [J]. Science & Technology in Chemical Industry, 2017, 25(4): 20-25.
陆诗建, 贡玉萍, 刘玲, 等. 有机胺CO2吸收技术研究现状与发展方向[J]. 洁净煤技术, 2022, 28(9): 44-54.
LU S J, GONG Y P, LIU L, et al. Research status and future development direction of CO2 absorption technology for organic amine [J]. Clean Coal Technology, 2022, 28(9): 44-54.
LIANG Z W, FU K Y, IDEM R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents [J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288.
ZHAO B, LIU F Z, CUI Z, et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: Process improvement [J]. Applied Energy, 2017, 185: 362-375.
ZHANG R, ZHANG X W, YANG Q, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC) [J]. Applied Energy, 2017, 205: 1002-1011.
王中红, 陆诗建. DETA-MDEA复合溶液吸收与解吸CO2实验研究[J]. 当代化工, 2019, 48(5): 1004-1012.
WANG Z H, LU S J. Experimental analysis on absorption and desorption of CO2 by DETA-MDEA complex solution [J]. Contemporary Chemical Industry, 2019, 48(5): 1004-1012.
孙路长, 连少翰, 王凯亮, 等. TETA/AMP复合水基CO2吸收液研究[J]. 洁净煤技术, 2020, 26(6): 58-63.
SUN C L, LIAN S H, WANG K L, et al. Research on aqueous TETA /AMP solution for CO2 capture [J]. Clean Coal Technology, 2020, 26(6): 58-63.
AI S, DANG B W, LV B H, et al. Absorption characteristics and kinetics of CO2 capture into N-methyldiethanolamine aqueous solution catalyzed by the immobilized carbonic anhydrase [J]. Biocatalysis and Biotransformation, 2019, 37(5): 331-340.
王凯旋, 李涛, 李玉, 等. 超强碱离子液体-有机胺-水复配溶剂高效CO2捕集[J]. 过程工程学报, 2023, 23(5): 781-789.
WANG K X, LI T, LI Y, et al. Efficiently CO2 capture by superbase ionic liquid-amine-water blending solvents [J]. The Chinese Journal of Process Engineering, 2023, 23(5): 781-789.
LV B H, YANG K X, ZHOU X B, et al. 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture [J]. Applied Energy, 2020, 264: 114703.
TAO M N, GAO J Z, ZHANG W, et al. A novel phase-changing nonaqueous solution for CO2 capture with high capacity, thermostability, and regeneration efficiency [J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9305-9312.
GUO H, LI C X, SHI X Q, et al. Nonaqueous amine-based absorbents for energy efficient CO2 capture [J]. Applied Energy, 2019, 239: 725-734.
BORHANI T N G, AZARPOUR A, AKBARI V, et al. CO2 capture with potassium carbonate solutions: A state-of-the-art review [J]. International Journal of Greenhouse Gas Control, 2015, 41: 142-162.
赵然磊, 马文涛, 徐晓, 等. 二氧化碳捕集化学吸收剂的研究进展[J]. 精细化工, 2023, 40(1): 1-9.
ZHAO R L, MA W T, XU X, et al. Research progress of chemical absorbents for carbon dioxide capture [J]. Fine Chemicals, 2023, 40(1): 1-9.
FENG Q, SUN B C, WANG L, et al. Enhancement of CO2 absorption into K2CO3 solution by cyclohexane in a high-shear reactor [J]. Energy & Fuels, 2019, 33(7): 6628-6633.
HU G P, NICHOLAS N J, SMITH K H, et al. Carbon dioxide absorption into promoted potassium carbonate solutions: A review [J]. International Journal of Greenhouse Gas Control, 2016, 53: 28-40.
THEE H, SMITH K H, SILVA G D, et al. Carbon dioxide absorption into unpromoted and borate-catalyzed potassium carbonate solutions [J]. Chemical Engineering Journal, 2012, 181: 694-701.
KIM Y E, CHOI J H, NAM S C, et al. CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 105-110.
SHEN S F, FENG X X, ZHAO R H, et al. Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine [J]. Chemical Engineering Journal, 2013, 222: 478-487.
MUSTAFA N F A, SHARIFF A M, TAY W H, et al. Mass transfer performance study for CO2 absorption into non-precipitated potassium carbonate promoted with glycine using packed absorption column [J]. Sustainability, 2020, 12(9): 3873.
ZHANG S H, LU Y Q. Kinetic performance of CO2 absorption into a potassium carbonate solution promoted with the enzyme carbonic anhydrase: Comparison with a monoethanolamine solution [J]. Chemical Engineering Journal, 2015, 279: 335-343.
SCHäFER D, KAMPS Á P, RUMPF B, et al. An experimental investigation of the influence of vanadium pentoxide on the solubility of CO2 in aqueous solutions of potassium carbonate [J]. Journal of Chemical & Engineering Data, 2012, 5710: 2902-2906.
郭东方, 郜时旺, 蔡铭, 等. 硼酸盐活化效应对碳酸钾溶液吸收CO2的影响[J]. 中国电机工程学报, 2014, 34(11): 1741-1747.
GUO D F, GAO S W, CAI M, et al. Effect of borate catalysis on CO2 absorption by potassium carbonate solutions [J]. Proceedings of the CSEE, 2014, 34(11): 1741-1747.
CULLINANE J T, ROCHELLE G T. Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine [J]. Chemical Engineering Science, 2004, 59(17): 3619-3630.
李伟斌, 董立户, 陈健. 仲胺和叔胺水溶液吸收CO2的动力学[J]. 过程工程学报, 2011, 11(3): 422-428.
LI W B, DONG L H, CHEN J. Absorption kinetics of CO2 in aqueous solutions of secondary and tertiary alkanolamines [J]. The Chinese Journal of Process Engineering, 2011, 11(3): 422-428.
RAMAZANI R, MAZINANI S, JAHANMIRI A, et al. Experimental investigation of the effect of addition of different activators to aqueous solution of potassium carbonate: Absorption rate and solubility [J]. International Journal of Greenhouse Gas Control, 2016, 45: 27-33.
BIŃCZAK G, POHORECKI R, MONIUK W, et al. Investigation of new potential amine activators for carbon dioxide absorption in carbonate solutions [J]. Chemical Engineering and Processing, 2018, 39(4): 353-365.
LI Y F, WANG L A, TAN Z C, et al. Experimental studies on carbon dioxide absorption using potassium carbonate solutions with amino acid salts [J]. Separation and Purification Technology, 2019, 219: 47-54.
HU G P, SMITH K H, WU Y, et al. Screening amino acid salts as rate promoters in potassium carbonate solvent for carbon dioxide absorption [J]. Energy & Fuels, 2017, 31(4): 4280-4286.
SHAO P J, CHEN H, YING Q, et al. Structure-activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution [J]. Energy & Fuels, 2020, 34(2): 2089-2096.
WANG F, ZHAO J, MIAO H, et al. Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process [J]. Applied Energy, 2018, 230: 734-749.
YU H. Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies [J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2255-2265.
韩中合, 白亚开. 燃煤电厂氨法脱碳工艺流程仿真及能耗分析[J]. 环境科学与技术, 2016, 39(8): 147-153.
HAN Z H, BAI Y K. Simulation and energy analysis of the ammonia based carbon capture process in a power plant [J]. Environmental Science & Technology, 2016, 39(8): 147-153.
LI L C, HAN W F, YU H, et al. CO2 absorption by piperazine promoted aqueous ammonia solution: Absorption kinetics and ammonia loss [J]. Greenhouse Gases: Science and Technology, 2013, 3(3): 231-245.
LI L, CONWAY W, PUXTY G, et al. The effect of piperazine (PZ) on CO2 absorption kinetics into aqueous ammonia solutions at 25.0 ℃ [J]. International Journal of Greenhouse Gas Control, 2015, 36: 135-143.
YANG N, XU D Y, YU H, et al. Potassium sarcosinate promoted aqueous ammonia solution for post-combustion capture of CO2 [J]. Greenhouse Gases: Science and Technology, 2014, 4(4): 555-567.
MA S C, CHEN G D, HAN T T, et al. Experimental study on the effect of Ni (II) additive on ammonia escape in CO2 capture using ammonia solution [J]. International Journal of Greenhouse Gas Control, 2015, 37: 249-255.
ASIF M, BAK C U, KIM W S. Energy minimization and ammonia abatement for CO2 capture using a blend of ammonia and 2-amino-2-methyl-1-propanol solution [J]. Separation and Purification Technology, 2015, 5010: 1565-1576.
FANG M X, XIANG Q Y, YU C J, et al. Experimental study on CO2 absorption by aqueous ammonia solution at elevated pressure to enhance CO2 absorption and suppress ammonia vaporization [J]. Greenhouse Gases: Science and Technology, 2015, 5(2): 210-221.
张君, 公茂利, 荚江霞, 等. 超重场强化氨水吸收烟道气中CO2的研究[J]. 安徽理工大学学报(自然科学版), 2006, 26(1): 48-51.
ZHANG J, GONG M L, JIA J X, et al. Study on remova of low concentration CO2, from flue gas by adueous ammonia under HIGEE at normal atmosphere [J]. Journal of Anhui University of Science and Technology (Natural Science), 2006, 26(1): 48-51.
ZHANG Q, CHENG C C, WU T, et al. The effect of Fe3O4 nanoparticles on the mass transfer of CO2 absorption into aqueous ammonia solutions [J]. Chemical Engineering and Processing, 2020, 154: 108002.
TAO M N, GAO J Z, ZHANG P, et al. Biogas upgrading by capturing CO2 in non-aqueous phase-changing diamine solutions [J]. Energy & Fuels, 2017, 31(6): 6298-6304.
LIU S, LING H, LV J, et al. New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: Absorption, desorption, phase separation, and technological process [J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20461-20471.
SMITH K, XIAO G K, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy & Fuels, 2014, 28(1): 299-306.
THEE H, SURYAPUTRADINATA Y A, MUMFORD K A, et al. A kinetic and process modeling study of CO2 capture with MEA-promoted potassium carbonate solutions [J]. Chemical Engineering Journal, 2012, 210: 271-279.
GAZZANI M, SUTTER D, MAZZOTTI M. Improving the efficiency of a chilled ammonia CO2 capture plant through solid formation: A thermodynamic analysis [J]. Energy Procedia, 2014, 63: 1084-1090.
DARDE V, THOMSEN K, VANWELL W J, et al. Chilled ammonia process for CO2 capture [J]. Energy Procedia, 2009, 11: 1035-1042.
BIAN Y Y, SHEN S F. CO2 absorption into a phase change absorbent: Water-lean potassium prolinate/ethanol solution [J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2318-2326.
HELDEBRANT D J, KOECH P K, GLEZAKOU V A, et al. Water-lean solvents for post-combustion CO2 capture: Fundamentals, uncertainties, opportunities, and outlook [J]. Chemical Reviews, 2017, 117(14): 9594-9624.
LI Y Y, LIU C J, PARNAS R, et al. The CO2 absorption and desorption performance of the triethylenetetramine + N,N-diethylethanolamine + H2O system [J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2351-2360.
TU Z F, HAN F, LIU C, et al. 2-Amino-2-methyl-1-propanol regulated triethylenetetramine-based nonaqueous absorbents for solid-liquid phase-change CO2 capture: Formation of crystalline powder products and mechanism analysis [J]. Separation and Purification Technology, 2023, 307: 122722.
WANG N, PENG Z Q, GAO H X, et al. New insight and evaluation of secondary amine/N-butanol biphasic solutions for CO2 capture: Equilibrium solubility, phase separation behavior, absorption rate, desorption rate, energy consumption and ion species [J]. Chemical Engineering Journal, 2022, 431: 133912.
ZHOU X B, LIU C, ZHANG J, et al. Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator [J]. Energy, 2023, 270: 126930.
BAI L J, LU S J, ZHAO Q Z, et al. Low-energy-consuming CO2 capture by liquid-liquid biphasic absorbents of EMEA/DEEA/PX [J]. Chemical Engineering Journal, 2022, 450: 138490.
ZHANG Y Y, JI X Y, XIE Y J, et al. Thermodynamic analysis of CO2 separation from biogas with conventional ionic liquids [J]. Applied Energy, 2018, 217: 75-87.
LIU F, SHEN Y, SHEN L, et al. Novel amino-functionalized ionic liquid/organic solvent with low viscosity for CO2 capture [J]. Environmental Science & Technology, 2020, 546: 3520-3529.
FU H, WANG X Y, SANG H N, et al. The study of bicyclic amidine-based ionic liquids as promising carbon dioxide capture agents [J]. Journal of Molecular Liquids, 2020, 304: 112805.
WEI L, GUO R F, TANG Y Q, et al. Properties of aqueous amine based protic ionic liquids and its application for CO2 quick capture [J]. Separation and Purification Technology, 2020, 239: 116531.
SANTIAGO R, LEMUS J, HOSPITAL-BENITO D, et al. CO2 capture by supported ionic liquid phase: Highlighting the role of the particle size [J]. ACS Sustainable Chemistry & Engineering, 2019, 715: 13089-13097.
ZHU X, SONG M L, LING B P, et al. The highly efficient absorption of CO2 by a novel DBU based ionic liquid [J]. Journal of Solution Chemistry, 2020, 49(3): 257-271.
MA T, WANG J X, DU Z Z, et al. A process simulation study of CO2 capture by ionic liquids [J]. International Journal of Greenhouse Gas Control, 2017, 58: 223-231.
YANG J, YU X H, YAN J Y, et al. CO2 capture using amine solution mixed with ionic liquid [J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2790-2799.
HUANG Y, ZHANG X P, ZHANG X, et al. Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes [J]. Industrial & Engineering Chemistry Research, 2014, 5329: 11805-11817.
YU G R, FAN S S, CHEN X C, et al. CO2 absorption by binary mixture of ionic liquids-monoethanolamine at lower pressure [J]. International Journal of Greenhouse Gas Control, 2016, 44: 52-58.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构