1.中国科学院 大连化学物理研究所 洁净能源国家实验室,辽宁 大连 116023
2.中国科学院大学,北京 100049
徐晶(1996—),博士研究生,研究方向为合成气直接制高碳含氧化合物,E-mail:ahajxu1996@dicp.ac.cn。
葛庆杰(1971—),博士,研究员,博士生导师,研究方向为CO2加氢、合成气催化转化, E-mail:geqj@dicp.ac.cn;
孙剑(1982—),博士,研究员,研究方向为CO2加氢、合成气催化转化,E-mail:sunj@dicp.ac.cn。
扫 描 看 全 文
徐晶,葛庆杰,孙剑.掺杂钙钛矿催化剂的制备及其催化合成气直接转化制C2+醇性能研究[J].低碳化学与化工,2024,49(01):25-32.
XU Jing,GE Qingjie,SUN Jian.Preparation of doped perovskite catalysts and their catalytic performance for direct conversion of syngas to C2+ alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):25-32.
徐晶,葛庆杰,孙剑.掺杂钙钛矿催化剂的制备及其催化合成气直接转化制C2+醇性能研究[J].低碳化学与化工,2024,49(01):25-32. DOI: 10.12434/j.issn.2097-2547.20230091.
XU Jing,GE Qingjie,SUN Jian.Preparation of doped perovskite catalysts and their catalytic performance for direct conversion of syngas to C2+ alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):25-32. DOI: 10.12434/j.issn.2097-2547.20230091.
由合成气直接转化制C,2+,醇(碳链中含两个及两个以上碳原子的醇类)是目前最有前景的醇类化合物合成路线之一,而钙钛矿结构的催化剂可用于提高该过程中的C,2+,醇合成性能。采用共沉淀法分别制备了Co、Mn掺杂的钙钛矿LFC和LFM催化剂(L、F、C和M分别指金属La、Fe、Co和Mn),系统考察了不同焙烧温度和掺杂元素对钙钛矿催化剂的C,2+,醇合成性能的影响。多种表征结果显示,低焙烧温度可优化LF-600(“-”后的数字指焙烧温度)催化剂的结构和吸附行为,在LF-600催化剂上,CO解离和非解离位点的耦合有助于提高反应的CO转化率和总醇的选择性,分别达16.9%和31.2%(质量分数),且Co和Mn的掺杂可改变LF-600催化剂的产物分布和活性。与LF-600催化剂相比,LFC-600催化剂的H,2,吸附能力低,有利于反应链增长,从而将C,2+,醇在总醇中的比例从60.4%提高至71.6%。LFM-600催化剂具有更多的低温H,2,吸附位点,导致醇类产物以甲醇为主,而Mn掺杂导致的颗粒团聚及Mn和O元素聚集会降低LFM-600催化剂的活性。
Direct conversion of syngas to C,2+, alcohols (alcohols with two or more carbon atoms) is currently one of the most promising routes for the synthesis of alcohols, and perovskite-structured catalysts can be used to improve the performance for the synthesis of C,2+, alcohols in this process. Co and Mn doped perovskite LFC and LFM catalysts (L, F, C and M refer to metal La, Fe, Co and Mn, respectively) were prepared by co-precipitation method, respectively, and the effects of different calcination temperatures and doped elements on the catalytic performance of perovskite catalysts were systematically investigated in C,2+, alcohols synthesis. Results of various characterizations show that the low calcination temperature can optimize the structural properties and adsorption behaviors of LF-600 (the numbers after “-” refer to the calcination temperature) catalyst, and the coupling of CO dissociation and non-dissociation sites on LF-600 catalyst helps to increase CO conversion and total alcohol selectivity to 16.9% and 31.2% (mass fraction), respectively. The doping of Co and Mn can change the product distribution and activity of LF-600 catalyst. Compared with LF-600 catalyst, LFC-600 catalyst promotes the chain growth due to the low H,2, adsorption capacity, thereby increasing the proportion of C,2+, alcohols in total alcohols from 60.4% to 71.6%. LFM-600 catalyst has more low-temperature H,2, adsorption sites leading to methanol being the main alcohol product, while particle agglomeration and Mn and O aggregation caused by Mn doping can reduce the activity of LFM-600 catalyst.
合成气C2+醇钙钛矿催化剂B位掺杂焙烧温度
syngasC2+ alcoholsperovskite catalystsB-site dopingcalcination temperature
LUK H T, MONDELLI C, FERRE D C, et al. Status and prospects in higher alcohols synthesis from syngas [J]. Chemical Society Reviews, 2017, 46(5): 1358-1426.
XUE X X, WENG Y J, YANG S C, et al. Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas [J]. RSC Advances, 2021, 11(11): 6163-6172.
刘竞舸, 闫国春, 房克功, 等. 合成气制混合醇催化剂研究进展[J]. 化学试剂, 2021, 43(10): 1369-1375.
LIU J G, YAN G C, FANG K G, et al. Research progress of catalysts for mixed alcohol synthesis from syngas [J]. Chemical Reagents, 2021, 43(10): 1369-1375.
LIU G B, YANG G H, PENG X B, et al. Recent advances in the routes and catalysts for ethanol synthesis from syngas [J]. Chemical Society Reviews, 2022, 51(13): 5606-5659.
AO M, PHAM G H, SUNARSO J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review [J]. ACS Catalysis, 2018, 8(8): 7025-7050.
GRIM R G, TO A T, FARBEROW C A, et al. Growing the bioeconomy through catalysis: A review of recent advancements in the production of fuels and chemicals from syngas-derived oxygenates [J]. ACS Catalysis, 2019, 9(5): 4145-4172.
DAMMA D, SMIRNIOTIS P G. Recent advances in the direct conversion of syngas to oxygenates [J]. Catalysis Science & Technology, 2021, 11(16): 5412-5431.
ZHOU W, KANG J C, CHENG K, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether [J]. Angewandte Chemie International Edition, 2018, 57(37): 12012-12016.
KANG J C, HE S, ZHOU W, et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis [J]. Nature Communications, 2020, 11(1): 827.
熊烨. 合成气制醇类的钼基催化剂的研究进展[J]. 天然气化工—C1化学与化工, 2019, 44(3): 117-121.
XIONG Y. Research process in Mo-based catalysts for synthesis of alcohols from syngas [J]. Natural Gas Chemical Industry, 2019, 44(3): 117-121.
丁云杰. 煤经合成气制乙醇和混合高碳伯醇的研究进展[J]. 煤化工, 2018, 46(1): 1-5.
DING Y J. Research progress in production of ethanol and mixed high carbon primary alcohols from coal through syngas [J]. Coal Chemical Industry, 2018, 46(1): 1-5.
魏晓娜, 李文双, 王闯, 等. 铑基催化剂在合成气制乙醇中的研究进展[J]. 应用化工, 2020, 49(9): 2388-2392.
WEI X N, LI W S, WANG C, et al. Research progress of Rh-based catalysts in the synthesis of ethanol from syngas [J]. Applied Chemical Industry, 2020, 49(9): 2388-2392.
LU Y W, ZHANG R G, CAO B B, et al. Elucidating the copper-hägg iron carbide synergistic interactions for selective CO hydrogenation to higher alcohols [J]. ACS Catalysis, 2017, 7(8): 5500-5512.
LI Y W, GAO W, PENG M, et al. Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols [J]. Nature Communications, 2020, 11(1): 61.
CHEN Y P, MA L X, ZHANG R G, et al. Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis [J]. Applied Catalysis B: Environmental, 2022, 312: 121393.
XU J, WEI J, ZHANG J X, et al. Highly selective production of long-chain aldehydes, ketones or alcohols via syngas at a mild condition [J]. Applied Catalysis B: Environmental, 2022, 307: 121155.
WANG C T, ZHANG J, QIN G Q, et al. Direct conversion of syngas to ethanol within zeolite crystals [J]. Chem, 2020, 6(3): 646-657.
QIN T T, LIN T J, QI X Z, et al. Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion [J]. Applied Catalysis B: Environmental, 2021, 285: 119840.
ZENG Z, LI Z S, GUO S X, et al. Janus Au-Fe2.2C catalyst for direct conversion of syngas to higher alcohols [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(33): 11258-11268.
ZENG F, XI X Y, CAO H T, et al. Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide [J]. Applied Catalysis B: Environmental, 2019, 246: 232-241.
XI X Y, ZENG F, CAO H T, et al. Enhanced C3+ alcohol synthesis from syngas using KCoMoSx catalysts: Effect of the Co-Mo ratio on catalyst performance [J]. Applied Catalysis B: Environmental, 2020, 272: 118950.
HE S, WANG W, SHEN Z, et al. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols [J]. Molecular Catalysis, 2019, 479: 110610.
ZHAO Z, LU W, YANG R O, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas [J]. ACS Catalysis, 2017, 8(1): 228-241.
LIN T J, QI X Z, WANG X X, et al. Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst [J]. Angewandte Chemie International Edition, 2019, 58(14): 4627-4631.
CUI W G, LI Y T, ZHANG H, et al. In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas [J]. Applied Catalysis B: Environmental, 2020, 278: 119262.
HUANG C, ZHU C, ZHANG M W, et al. Design of efficient ZnO/ZrO2 modified CuCoAl catalysts for boosting higher alcohol synthesis in syngas conversion [J]. Applied Catalysis B: Environmental, 2022, 300: 120739.
ZENG Z, LI Z, KANG L, et al. A Monodisperse ε’-(CoxFe1–x)2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols [J]. ACS Catalysis, 2022, 12: 6016-6028.
王欢, 唐浩东, 卢保同, 等. 炭载体对钴基催化剂制混合醇的影响[J]. 天然气化工—C1化学与化工, 2014, 39(5): 7-11.
WANG H, TANG H D, LU B T. Effects of Co-based catalysts supported on different carbons on synthesis of mixed higher alcohols from syngas [J]. Natural Gas Chemical Industry, 2014, 39(5): 7-11.
YANG Q L, CAO A, KANG N, et al. Bimetallic nano Cu-Co based catalyst for direct ethanol synthesis from syngas and its structure variation with reaction time in slurry reactor [J]. Industrial & Engineering Chemistry Research, 2017, 56(11): 2889-2898.
THAO N T ALAMDARI H, ZAHEDI-NIAKI M H, et al. LaCo1-xCuxO3-δ perovskite catalysts for higher alcohol synthesis [J]. Applied Catalysis A: General, 2006, 311: 204-212.
THAO N T. Synthesis of Co-Cu/La2O3 pervoskites for hydrogenation of CO [J]. Asian Journal of Chemistry, 2013, 25(14): 8082-8086.
LIU G L, PAN D M, NIU T, et al. Nanoparticles of Cu-Co alloy supported on high surface area LaFeO3-preparation and catalytic performance for higher alcohol synthesis from syngas [J]. RSC Advances, 2015, 5(40): 31637-31647.
WANG T, ZHANG C, WANG J Y, et al. The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides [J]. Journal of Catalysis, 2020, 390: 1-11.
BULAVCHENKO O A, CHEREPANOVA S V, MALAKHOV V V, et al. In situ XRD study of nanocrystalline cobalt oxide reduction [J]. Kinetics and Catalysis, 2009, 50(2): 192-198.
XIANG Y Z, KRUSE N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins [J]. Nature Communications, 2016, 7: 13058.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构