1.西南石油大学 化学化工学院,碳中和研究院,四川 成都 610500
2.天府永兴实验室,四川 成都 610000
3.中国农业大学 理学院,北京 100193
4.成都岷山绿氢能源有限公司,四川 成都 610000
李欣雨(1996—),硕士研究生,研究方向为有机液体储氢,E-mail:2811945568@qq.com。
李佳奇(1982—),博士,副教授,研究方向为有机合成及化学储氢,E-mail:jiaqili@cau.edu.cn;
雷宪章(1955—),博士,德国国家工程院院士,教授,研究方向为能源电力及装备、新型能源及新型材料,E-mail:leixianzhang@hotmail.com;
周太刚(1982—),博士,研究员,研究方向为有机合成、不对称催化及化学储氢,E-mail:tgzhou@swpu.edu.cn。
扫 描 看 全 文
李欣雨,唐鋆磊,李佳奇等.有机液体储氢体系研究进展[J].低碳化学与化工,2023,48(06):107-119.
LI Xinyu,TANG Junlei,LI Jiaqi,et al.Research progress in hydrogen storage system of organic liquid[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):107-119.
李欣雨,唐鋆磊,李佳奇等.有机液体储氢体系研究进展[J].低碳化学与化工,2023,48(06):107-119. DOI: 10.12434/j.issn.2097-2547.20230080.
LI Xinyu,TANG Junlei,LI Jiaqi,et al.Research progress in hydrogen storage system of organic liquid[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):107-119. DOI: 10.12434/j.issn.2097-2547.20230080.
有机液体储氢技术是利用液态有机储氢载体进行加(脱)氢反应,在常温常压下实现大规模、远距离氢气安全储运的技术,被国际能源署推荐为国际氢气贸易和远程氢气运输的最佳方式之一。但是目前有机液体储氢技术还存在加(脱)氢反应过程缓慢、脱氢温度高、储氢体系循环率低以及高度依赖贵金属催化剂等缺点。本文首先对常见的有机氢载体进行分类,并分析了各种有机氢载体的物理化学性质及其在加(脱)氢反应中的特征差异,然后从加(脱)氢反应机理和催化剂的研究等方面对有机液体储氢体系的研究现状进行了总结,最后对有机液体储氢技术的发展前景进行了展望。
Organic liquid hydrogen storage technology is a technology that uses liquid organic hydrogen storage carriers to hydrogen addition (dehydrogenation) reaction and achieve large-scale, long-distance hydrogen storage and transportation at normal temperature and pressure. It is recommended by the International Energy Agency as one of the best ways for international hydrogen trade and long-distance hydrogen transportation. However, the current organic liquid hydrogen storage technology still has some shortcomings, such as slow hydrogen addition (dehydrogenation) reaction process, high dehydrogenation temperature, low cycle rate of hydrogen storage system and high dependence on precious metal catalyst. The common organic hydrogen carriers were classified firstly, and the physical and chemical properties of various organic hydrogen carriers and their characteristic differences in hydrogen addition (dehydrogenation) reaction were analyzed, and then the current research status of organic liquid hydrogen storage system was summarized from the research of hydrogen addition (dehydrogenation) reaction mechanism and catalyst. Finally, the development prospect of organic liquid hydrogen storage technology was prospected.
有机液体储氢有机氢载体加氢脱氢催化剂
organic liquid hydrogen storageorganic hydrogen carriershydrogenationdehydrogenationcatalyst
陈迎. 全球应对气候变化的中国方案与中国贡献[J]. 当代世界, 2021, (5): 4-9.
王明星. 关于温室气体浓度变化及其引起的气候变化的几个问题[J]. 气候与环境研究, 2000, 5(3): 329-332.
张华等. 大气污染与气候变化[M]. 北京: 气象出版社, 2022.
雷宪章. 发展氢能技术是实现碳中和目标的重要路径之一[J]. 中国电力企业管理, 2021, 637(16): 36-39.
EBERLE U, FELDERHOFF M, SCHUTH F. Chemical and physical solutions for hydrogen storage [J]. Angew Chem Int Ed Engl, 2009, 48(36): 6608-6630.
MAKOWSKI P, THOMAS A, KUHN P, et al. Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules [J]. Energy Environ Sci, 2009, 2(5): 480-490.
SULTAN O, SHAW H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers [J]. NASA STI/Recon Technical Report N, 1975, 76: 33642-33645.
LIM S, SONG Y, JEONG K, et al. Enhanced dehydrogenative H2 release from N-containing amphicyclic LOHC boosted by Pd-supported nanosheet MFI zeolites having strong acidity and large mesoporosity [J]. ACS Sustainable Chem Eng, 2022, 10(11): 3584-3594.
NARAYANAN T M, HE G, GENÇER E, et al. Role of liquid hydrogen carriers in deeply decarbonized energy systems [J]. ACS Sustainable Chem Eng, 2022, 10(33):10768-10780.
WANG Z, TONKS I, BELLI J, et al. Dehydrogenation of N-ethyl perhydrocarbazole catalyzed by PCP pincer iridium complexes: Evaluation of a homogenous hydrogen storage system [J]. J Organomet Chem,2009, 694(17): 2854-2857.
KREUDER H, BOELTKEN T, CHOLEWA M, et al. Heat storage by the dehydrogenation of methylcyclohexane-experimental studies for the design of a microstructured membrane reactor [J]. Int J Hydrogen Energy, 2016, 41(28): 12082-12092.
PATIL S P, PANDE J V, BINIWALE R B. Non-noble Ni-Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage [J]. Int J Hydrogen Energy, 2013, 38(35): 15233-15241.
TEICHMANN D, ARLT W, WASSERSCHEID P, et al. A future energy supply based on liquid organic hydrogen carriers (LOHC) [J]. Energy Environ Sci, 2011, 4(8): 2767-2773.
KALENCHUK A N, BOGDAN V I, DUNAEV S F, et al. Effect of surface hydrophilization on Pt/Sibunit catalytic activity in bicyclohexyl dehydrogenation in hydrogen storage application [J]. Int J Hydrogen Energy, 2018, 43(12): 6191-6196.
ALHUMAIDAN F, CRESSWELL D, GARFORTH A. Hydrogen storage in liquid organic hydride: Producing hydrogen catalytically from methylcyclohexane [J]. Sustainable Energy Fuels, 2011, 25(10): 4217-4234.
KALENCHUK A N, BOGDAN V I, DUNAEV S F, et al. Effect of surface hydrophilization on Pt/Sibunit catalytic activity in bicyclohexyl dehydrogenation in hydrogen storage application [J]. Int J Hydrogen Energy, 2018, 43(12): 6191-6196.
KIM R Y, RIVERA H, EVARTS S E, et al. A laser-activated membrane introduction mass spectrometry study of proton spillover promoted alkane dehydrogenation [J]. Anal Chem, 2020, 92(19): 13462-13469.
ZHANG C, LIANG X Q, LIU S G. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char [J]. Int J Hydrogen Energy, 2011, 36(15): 8902-8907.
HELLER A, RAUSCH M H, SCHULZ P S, et al. Binary diffusion coefficients of the liquid organic hydrogen carrier system dibenzyltoluene/perhydrodibenzyltoluene [J]. J Chem Eng Data, 2016, 61(1): 504-511.
PHILIPPE M. Organic materials for hydrogen storage applications: From physisorption on organic solids to chemisorption in organic molecules [J]. Energy Environ Sci, 2009, 2(5): 480-490.
PRADHAN A U, SHUKLA A, PANDE J V, et al. A feasibility analysis of hydrogen delivery system using liquid organic hydrides [J]. Int J Hydrogen Energy, 2011, 36(1): 680-688.
SHUKLA A, KARMAKAR S, BINIWALE R B. Hydrogen delivery through liquid organic hydrides: Considerations for a potential technology [J]. Int J Hydrogen Energy, 2012, 37(4): 3719-3726.
SISAKOVA K, PODROJKOVA N, ORINAKOVA R, et al. Novel catalysts for dibenzyltoluene as a potential liquid organic hydrogen carrier use—A mini-review [J]. Sustainable Energy Fuels, 2021, 35(9): 7608-7623
PEZ G P, SCOTT A R, COOPER A C, et al. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates: EP1660404A2 [P]. 2004-11-10.
YANG M, HAN C Q, NI G, et al. Temperature controlled three-stage catalytic dehydrogenation and cycle performance of perhydro-9-ethylcarbazole [J]. Int J Hydrogen Energy, 2012, 37(17): 12839-12845.
DONG Y, YANG M, ZHU T, et al. Fast dehydrogenation kinetics of perhydro-N-propylcarbazole over a supported Pd catalyst [J]. ACS Appl Energy Mater, 2018, 1(8): 4285-4292.
CHIOU C T, SCHMEDDING D W, MANES M. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes [J]. Environ Sci Technol, 2005, 39(22): 8840-8846.
SENSEMAN C E, NELSON O A. Vapor pressures of carbazol, observed and calculated [J]. J Ind Eng Chem, 1923, 15(4): 382-383.
SUN J, JIANG H J, ZHANG J L, et al. Synthesis and characterization of heteroatom substituted carbazole derivatives: Potential host materials for phosphorescent organic light-emitting diodes [J]. New J Chem, 2013, 37: 977-985.
YANG M, DONG Y, FEI S X, et al. Hydrogenation of N-propylcarbazole over supported ruthenium as a new prototype of liquid organic hydrogen carriers (LOHC) [J]. RSC Adv, 2013, 3(47): 24877-24881.
SOTOODEH F, ZHAO L, SMITH K J. Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst [J]. Appl Catal A-Gen, 2009, 362(1): 155-162.
LI L L, YANG M, DONG Y, et al. Hydrogen storage and release from a new promising liquid organic hydrogen storage carrier (LOHC): 2-Methylindole [J]. Int J Hydrog Energy, 2016, 41(36): 16129-16134.
YANG M, CHENG G, XIE D, et al. Study of hydrogenation and dehydrogenation of 1-methylindole for reversible onboard hydrogen storage application [J]. Int J Hydrog Energy, 2018, 43(18): 8868-8876.
CHEN Z W, YANG M, ZHU T, et al. 7-ethylindole: A new efficient liquid organic hydrogen carrier with fast kinetics [J]. Int J Hydrog Energy, 2018, 43(28): 12688-12696.
DONG Y, YANG M, LI L L, et al. Study on reversible hydrogen uptake and release of 1,2-dimethylindole as a new liquid organic hydrogen carrier [J]. Int J Hydrog Energy, 2019, 44(10): 4919-4929.
DONG Y, ZHAO H M, ZHAO Y H, et al. Study of catalytic hydrogenation and dehydrogenation of 2,3-dimethylindole for hydrogen storage application [J]. RSC Adv, 2021, 11(26): 15729-15737.
CHEN Z W, YANG M, ZHU T, et al. 7-Ethylindole: A new efficient liquid organic hydrogen carrier with fast kinetics [J]. Int J Hydrog Energy, 2018, 43(28): 12688-12696.
YANG M, CHENG G, XIE D D, et al. Study of hydrogenation and dehydrogenation of 1-methylindole for reversible onboard hydrogen storage application [J]. Int J Hydrog Energy, 2018, 43(18): 8868-8876.
CHEN H, SHUANG H L, LIN W W, et al. Tuning interfacial electronic properties of palladium oxide on vacancy-abundant carbon nitride for low-temperature dehydrogenation [J]. ACS Catal, 2021, 11(10): 6193-6199.
LOCHTE H L, MEYER H W H. Some colorado shale-oil bases1 [J]. J Am Chem Soc, 1956, 78(10): 2150-2153.
DE LA MARE P B D, KIAMUD-DIN M, RIDD J H. The 5- and 8-bromination of quinoline and some of its derivatives [J]. J Chem Soc, 1960: 561-565.
KING F E, HENSHALL T, WHITEHEAD R L S D. Synthetical and stereochemical investigations of reduced cyclic bases. Part II. The cis- and trans-decahydroquinolines [J]. J Chem Soc, 1948: 1373-1375.
SETH K, ROY S R, KUMAR A, et al. The palladium and copper contrast: A twist to products of different chemotypes and altered mechanistic pathways [J]. Catal Sci Technol, 2016, 6: 2892-2896.
FUJITA K I, WADA T, SHIRAISHI T. Reversible interconversion between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine by iridium-catalyzed hydrogenation/dehydrogenation for efficient hydrogen storage [J]. Angew Chem Int Ed, 2017, 56(36): 10886-10889.
BROWN H C, HOLMES R R. The heats of reaction of pyridine and nitrobenzene with boron trifluoride, trichloride and tribromide: The relative acceptor properties of the boron halides1,2 [J]. J Am Chem Soc, 1956, 78(10): 2173-2176.
VON WALD G, ALBERS D, CORTES H, et al. Background vapor from six ionic liquids and the partition coefficients and limits of detection for 10 different analytes in those ionic liquids measured using headspace gas chromatography [J]. J Chromatogr A, 2008, 1201(1): 15-20.
BERRIEN J F, OURÉVITCH M, MORGANT G, et al. A crystalline H-bond cluster of hexafluoroisopropanol (HFIP) and piperidine: Structure determination by X ray diffraction [J]. J Fluor Chem 2007, 128(7): 839-843.
GONTRANI L, RAMONDO F, CARACCIOLO G, et al. A study of cyclohexane, piperidine and morpholine with X-ray diffraction and molecular simulations [J]. J Mol Liq, 2008, 139(1): 23-28.
DOMAŃSKA U, ZAWADZKI M. Phase equilibria of (pyrrole + benzene, cyclohexane, and hexane) and density of (pyrrole + benzene and cyclohexane) binary systems [J]. J Chem Eng Data, 2010, 55(12): 5413-5421.
PICKETT L W, CORNING M E, WIEDER G M, et al. The vacuum ultraviolet spectra of cyclic compounds. III. Amines1 [J]. J Am Chem Soc, 1953, 75(7): 1618-1622.
FAKSTORP J, RALEIGH D, SCHNIEPP L E. Preparation and reactions of dialkoxytetrahydrofurans [J]. J Am Chem Soc, 1950, 72(2): 869-874.
LIANG F, LU M, BIRCH M E, et al. Determination of polycyclic aromatic sulfur heterocycles in diesel particulate matter and diesel fuel by gas chromatography with atomic emission detection [J]. J Chromatogr A, 2006, 1114(1): 145-153.
GONTRANI L, RAMONDO F, CAMINITI R. Furan and thiophene in liquid phase: An X-ray and molecular dynamics study [J]. Chem Phys Lett, 2006, 422(1): 256-261.
HOFFMANN F W, SIMMONS T C, BECK R B, et al. Fluorocarbon derivatives. I. Derivatives of sulfur hexafluoride [J]. J Am Chem Soc, 1957, 79(13): 3424-3429.
HAINES W E, HELM R V, BAILEY C W, et al. Purification and properties of ten organic sulfur compounds [J]. J Phys Chem C, 1954, 58(3): 270-278.
KASHIKI T, SHINAMURA S, KOHARA M, et al. One-pot synthesis of benzothiophenes and benzoselenophenes from o-halo-substituted ethynylbenzenes: Convenient approach to mono-, bis-, and tris-chalcogenophene-annulated benzenes [J]. Org Lett, 2009, 11(11): 2473-2475.
KIM I K, HUANG C P. Sonochemical degradation of polycyclic aromatic sulfur hydrocarbons (PASHs) in aqueous solutions exemplified by benzothiophene [J]. J Taiwan Inst Chem Eng, 2005, 28(7): 1107-111.
YANG M, XING X, ZHU T, et al. Fast hydrogenation kinetics of acridine as a candidate of liquid organic hydrogen carrier family with high capacity [J]. J Energy Chem, 2020, 41: 115-119.
AINEMBABAZI D, AN N, MANAYIL J C, et al. Acceptorless amine dehydrogenation and transamination using Pd-doped hydrotalcites [J]. ACS Catal, 2018, 9(2): 1055-1065.
HU H T, NIE Y Q, TAO Y W, et al. Metal-free carbocatalyst for room temperature acceptorless dehydrogenation of N-heterocycles [J]. Sci Adv, 2022, 8(4): l9478.
FORBERG D, SCHWOB T, ZAHEER M, et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia [J]. Nat Commun, 2016, 7(1): 1-6.
FANG M, SÁNCHEZ-DELGADO R A. Ruthenium nanoparticles supported on magnesium oxide: A versatile and recyclable dual-site catalyst for hydrogenation of mono-and poly-cyclic arenes, N-heteroaromatics, and S-heteroaromatics [J]. J Catal, 2014, 311: 357-368.
YU Y, HE T, WU A A, et al. Reversible hydrogen uptake/release over a sodium phenoxide-cyclohexanolate pair [J]. Angew Chem Int Ed, 2019, 131(10): 3134-3139.
TAN K C, YU Y, CHEN R, et al. Metallo-N-heterocycles-A new family of hydrogen storage material [J]. Energy Stor Mater, 2020, 26: 198-202.
JING Z J, YUAN Q Q, YU Y, et al. Developing ideal metalorganic hydrides for hydrogen storage: From theoretical prediction to rational fabrication [J]. ACS Materials Letters, 2021, 3(9): 1417-1425.
HU P, FOGLER E, DISKIN-POSNER Y, et al. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation [J]. Nat Commun, 2015, 6(1): 68599.
SHAO Z H, LI Y, LIU C G, et al. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation [J]. Nat Commun, 2020, 11(1): 591.
KUMAR A, JANES T, ESPINOSA-JALAPA N A, et al. Selective hydrogenation of cyclic imides to diols and amines and its application in the development of a liquid organic hydrogen carrier [J]. J Am Chem Soc, 2018, 140(24): 7453-7457.
SHUANG H L, CHEN H, WU F, et al. Catalytic dehydrogenation of hydrogen-rich liquid organic hydrogen carriers by palladium oxide supported on activated carbon [J]. Fuel, 2020, 275: 117896.
CHEN H, SHUANG H L, LIN W W, et al. Tuning interfacial electronic properties of palladium oxide on vacancy-abundant carbon nitride for low-temperature dehydrogenation [J]. ACS Catal, 2021, 11(10): 6193-6199.
NARAYANAN T M, HE G, GENÇER E, et al. Role of liquid hydrogen carriers in deeply decarbonized energy systems [J]. ACS Sustain Chem Eng, 2022, 10(33): 10768-10780.
YANG M, CHENG G, XIE D D, et al. Study of hydrogenation and dehydrogenation of 1-methylindole for reversible onboard hydrogen storage application [J]. Int J Hydrog Energy, 2018, 43(18): 8868-8876.
WU Y, YU H G, GUO Y R, et al. A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles: Boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity [J]. Chem Eng Sci, 2019, 10: 10459-10465.
GE L X, QIU M H, ZHU Y F, et al. Synergistic catalysis of Ru single-atoms and zeolite boosts high-efficiency hydrogen storage [J]. Appl Catal B, 2022, 319(15): 121958.
SOTOODEH F, ZHAO L, SMITH K J. Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst [J]. APPL CATAL A-GEN, 2009, 362(1): 155-162.
YANG M, DONG Y, FEI S X, et al. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts [J]. Int J Hydrog Energy, 2014, 39(33): 18976-18983.
WANG B, YAN T, CHANG T Y, et al. Palladium supported on reduced graphene oxide as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole [J]. Carbon, 2017, 122: 9-18.
WANG B, CHANG T Y, JIANG Z, et al. Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole [J]. Appl Catal B, 2019, 251: 261-272.
DONG C Y, GAO Z R, LI Y L, et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles [J]. Nat Catal, 2022, 5(6): 485-493.
HU H T, NIE Y Q, TAO Y W, et al. Metal-free carbocatalyst for room temperature acceptorless dehydrogenation of N-heterocycles [J]. Sci Adv, 2022, 8(4): l9478.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构