太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
姚正阳(1999—),硕士研究生,研究方向为二氧化碳催化转化,E-mail:714064150@qq.com。
李聪明(1974—),博士,教授,研究方向为二氧化碳资源化利用,E-mail:licongming0523@163.com。
扫 描 看 全 文
姚正阳,王晓月,郭晓宏等.多相催化加氢反应中H2异裂解离的研究进展[J].低碳化学与化工,2024,49(01):1-11.
YAO Zhengyang,WANG Xiaoyue,GUO Xiaohong,et al.Research progress of H2 heterolysis in heterogeneous catalytic hydrogenation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):1-11.
姚正阳,王晓月,郭晓宏等.多相催化加氢反应中H2异裂解离的研究进展[J].低碳化学与化工,2024,49(01):1-11. DOI: 10.12434/j.issn.2097-2547.20230077.
YAO Zhengyang,WANG Xiaoyue,GUO Xiaohong,et al.Research progress of H2 heterolysis in heterogeneous catalytic hydrogenation[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):1-11. DOI: 10.12434/j.issn.2097-2547.20230077.
多相催化加氢反应是制备高附加值燃料及化学品的重要途径,而H,2,异裂解离过程及其形成的氢化物(M—H,δ-,)的化学性质与加氢反应活性和选择性密切相关。然而,由于多相催化剂表面结构复杂导致了H,2,异裂解离过程及M—H,δ-,化学性质的多样性,为认识H,2,异裂解离及M—H,δ-,的化学性质对加氢反应机理的调控规律带来了巨大挑战。综述了H,2,异裂解离的机理及M—H,δ-,的化学性质,并介绍了常用于检测M—H,δ-,的表征技术并分析了各自的优缺点。重点讨论了不同多相催化体系,如负载型金属催化剂、金属氧化物催化剂以及阴离子杂化金属催化剂中,H,2,异裂解离与催化剂活性位点结构之间的内在关系及其对加氢反应性能的优化,并提出了调控H,2,异裂解离的有效策略。最后,针对当前H,2,异裂解离及M—H,δ-,研究面临的主要挑战进行了总结,同时对未来发展方向进行了展望。
Heterogeneous catalytic hydrogenation is an important approach for preparation of high-value-added fuels and chemicals, while the processes of H,2, heterolysis and chemical properties of generated hydrides (M—H,δ-,) are closely related to hydrogenation activity and selectivity. However, the complex surface structure of heterogeneous catalysts, which leads to a diversity of H,2, heterolysis process and M—H,δ-, chemical properties, poses a great challenge in understanding the regulation of H,2, heterolysis and M—H,δ-, chemical properties on the mechanism of hydrogenation reactions. The mechanism of H,2, heterolysis and the chemical properties of M—H,δ-, were reviewed, and the characterization techniques commonly used to detect M—H,δ-, were presented and their advantages and disadvantages were analyzed. The internal relationship between H,2, heterolysis and the structure of active site of catalysts in different heterogeneous catalytic systems, such as metal-supported catalysts, metal oxide catalysts and anionic hybrid metal catalysts, as well as the optimization of the performance of hydrogenation reaction were discussed, and effective strategies to regulate H,2, heterolysis were proposed. Finally, the main challenges in the study of H,2, heterolysis and M—H,δ-, were summarized and future development directions were outlined.
加氢反应H2异裂解离氢化物催化剂多相催化
hydrogenation reactionH2 heterolysishydridecatalystheterogeneous catalysis
ZHANG L L, ZHOU M X, WANG A Q, et al. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms [J]. Chemical Reviews, 2020, 120(2): 683-733.
刘元华, 董秀琴, 张绪穆. 镍催化均相不对称氢化反应研究进展[J]. 有机化学, 2020, 40(5): 1096-1104.
LIU Y H, DONG X Q, ZHANG X M. Recent advances of nickel-catalyzed homogeneous asymmetric hydrogenation [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1096-1104.
胡帅成, 程宏辉, 韩兴博, 等. 二维材料MXene在储氢领域的应用研究[J]. 功能材料, 2022, 53(5): 5160-5172.
HU S C, CHENG H H, HAN X B, et al. Application of two-dimensional MXene in hydrogen storage [J]. Journal of Functional Materials, 2022, 53(5): 5160-5172.
沈辰阳 孙楷航, 张月萍, 等. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156.
SHEN C Y, SUN K H, ZHANG Y P, et al. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156.
YAN Y, SHI W, YUAN Z, et al. The formation of Ti-H species at interface is lethal to the efficiency of TiO2-based dye-sensitized devices [J]. Journal of the American Chemical Society, 2017, 139(5): 2083-2089.
COPERET C, ESTES D P, LARMIER K, et al. Isolated surface hydrides: Formation, structure, and reactivity [J]. Chemical Reviews, 2016, 116(15): 8463-8505.
韩布兴. Pt/TiH2催化剂上的氢活化及异裂加氢[J]. 化学通报, 2019, 64(31): 3153-3155.
HAN B X, The ionic hydrogenation on the Pt/TiH2 catalyst [J]. Chinese Science Bulletin, 2019, 64(31): 3153-3155.
AIREDDY D R, DING K L. Heterolytic dissociation of H2 in heterogeneous catalysis [J]. ACS Catalysis, 2022, 12(8): 4707-4723.
GIBB T R P. Primary solid hydrides [M]//COTTON F A. Progress in Inorganic Chemistry. New Jersey: Wiley. 1962: 315-509.
XIANG S, DONG L, WANG Z Q, et al. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran [J]. Nature Communications, 2022, 13(1): 3657.
LIU PX, ZHAO Y, QIN RX, Et AL. Photochemical route for synthesizing atomically dispersed palladium catalysts [J]. Science, 2016, 352: 797-801.
WU S, TSENG K Y, KATO R, et al. Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface [J]. Journal of the American Chemical Society, 2021, 143(24): 9105-9112.
王英辉, 魏思敏, 段金伟, 等. 理论研究“受阻路易斯酸碱对”催化的烯醇硅醚氢化反应机理[J]. 化学学报, 2021, 79(9): 1164-1172.
WANG Y H, WEI S M, DUAN J W, et al. Mechanism of silyl enol ethers hydrogenation catalysed by frustrated Lewis pairs:A theoretical study [J]. Acta Chimica Sinica, 2021, 79(9): 1164-1172.
张震北, 孙伟, 曹治珊. “受阻路易斯酸碱对”活化小分子反应研究进展[J]. 有机化学, 2018, 38(6): 1292-1318.
ZHANG Z B, SUN W, CAO Z S. Progress in activation of small molecules promoted by frustrated Lewis pairs [J]. Chinese Journal of Organic Chemistry, 2018, 38(6): 1292-1318.
CHEN H Y, GAO P, LIU Z X, et al. Direct detection of reactive gallium-hydride species on the Ga2O3 surface via solid-state nmr spectroscopy [J]. Journal of the American Chemical Society, 2022, 144(38): 17365-17375.
GARCÍA-MELCHOR M, LÓPEZ N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: The example of CeO2 [J]. The Journal of Physical Chemistry C, 2014, 118(20): 10921-10926.
NEGREIROS F R, CAMELLONE M F, FABRIS S. Effects of thermal fluctuations on the hydroxylation and reduction of ceria surfaces by molecular H2 [J]. The Journal of Physical Chemistry C, 2015, 119(37): 21567-21573.
WERNER K, WENG X, CALAZA F, et al. Toward an understanding of selective alkyne hydrogenation on ceria: On the impact of O vacancies on H2 interaction with CeO2(111) [J]. Journal of the American Chemical Society, 2017, 139(48): 17608-17616.
LI Z R, WERNER K, CHEN L, et al. Interaction of hydrogen with ceria: Hydroxylation, reduction, and hydride formation on the surface and in the bulk [J]. Chem, 2021, 27(16): 5268-5276.
GARCÍA-MELCHOR M, BELLAROSA L, LÓPEZ N. Unique reaction path in heterogeneous catalysis: The concerted semi-hydrogenation of propyne to propene on CeO2 [J]. ACS Catalysis, 2014, 4(11): 4015-4020.
LIU X L, WANG M H, YIN H, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34 [J]. ACS Catalysis, 2020, 10(15): 8303-8314.
KOKES R J,DENT A L, CHANG C. C,et al. Infrared studies of isotope effects for hydrogen adsorption on zinc oxide [J]. Journal of the American Chemical Society, 1971, 94(13): 4429-4436.
BOCCUZZI F,BORELLO E, ZECCHINA A, et al. Infrared study of ZnO surface properties: I. Hydrogen and deuterium chemisorption at room temperature [J]. Journal of Catalysis, 1978, 51(2): 150-159.
HUSSAIN G, SHEPPARD N. A fourier-transform spectral-ratioed reinvestigation of the infrared spectra from H2 and D2 adsorbed on ZnO at room temperature and at 160 °C [J]. Journal of the Chemical Society, Faraday transactions, 1990, 86: 1615-1617.
DONG A Y, LIN L, MU R, et al. Modulating the formation and evolution of surface hydrogen species on ZnO through Cr addition [J]. ACS Catalysis, 2022, 12: 6255-6264.
ONISHI T,ABE H, MARUYA K I, et al. I.R. Spectra of hydrogen adsorbed on ZrO2 [J]. Journal of the Chemical Socirty, Chemical Communication, 1985, 617-618.
KONDO J,DOMEN K, ONISHI T. A mechanism of ethene hydrogenation over ZrO2 studied by infrared spectroscopy [J]. Research on Chemical Intermediates, 1993, 19: 521-551.
POLO-GARZON F, LUO S, CHENG Y Q, et al. Neutron scattering investigations of hydride species in heterogeneous catalysis [J]. ChemSusChem, 2019, 12(1): 93-103.
SILVERWOOD I P, ROGERS S M, CALLEAR S K, et al. Evidence for a surface gold hydride on a nanostructured gold catalyst [J]. Chemical Communications (Camb), 2016, 52(3): 533-536.
COLLINS S E,CIES J M, del RÍO E, et al. Hydrogen interaction with a ceria-zirconia supported gold catalyst. Influence of CO Co-adsorption and pretreatment conditions [J]. The Journal of Physical Chemistry C, 2007, 111(39): 14371-14379.
WU Z L, CHENG Y Q, TAO F, et al. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst [J]. Journal of the American Chemical Society, 2017, 139(28): 9721-9727.
MOON J, CHENG Y Q, DAEMEN L L, et al. Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy [J]. ACS Catalysis, 2020, 10(9): 5278-5287.
JUÁREZ R, PARKER S F, CONCEPCIÓN P, et al. Heterolytic and heterotopic dissociation of hydrogen on ceria-supported gold nanoparticles. Combined inelastic neutron scattering and FT-IR spectroscopic study on the nature and reactivity of surface hydrogen species [J]. Chemical Science, 2010, 1: 731-738.
LI Z R, WERNER K, QIAN K, et al. Oxidation of reduced ceria by incorporation of hydrogen [J]. Angewandte Chemie International Edition, 2019, 58(41): 14686-14693.
李建飞, 吴亚云, 付笑盈, 等. Pt/α-Al2O3表面氢气的吸附、解离和传质的计算[J]. 功能材料, 2021, 52(1): 1180-1184.
LI J F, WU Y Y, FU X Y, et al. Calculation of dissociation and transfer of hydrogen on Pt/α-Al2O3 [J]. Journal of Functional Materials, 2021, 52(1): 1180-1184.
QIN R X, ZHOU L Y, LIU P X, et al. Alkali ions secure hydrides for catalytic hydrogenation [J]. Nature Catalysis, 2020, 3(9): 703-709.
KIM W T, KIM D, JO Y, et al. Potassium as the best alkali metal promoter in boosting the hydrogenation activity of Ru/MgO for aromatic LOHC molecules by facilitated heterolytic H2 adsorption [J]. Journal of Catalysis, 2023, 419: 112-124.
SUN K J, KOHYAMA M, TANAKA S, et al. A study on the mechanism for H2 dissociation on Au/TiO2 catalysts [J]. The Journal of Physical Chemistry C, 2014, 2014, 118(3): 1611-1617.
LIU Z P, WANG C M, FAN K N. Single gold atoms in heterogeneous catalysis: Selective 1,3-butadiene hydrogenation over Au/ZrO2 [J]. Angewandte Chemie International Edition, 2006, 45(41): 6865-6868.
LI J D, CROISET E, RICARDEZ-SANDOVAL L. Effect of metal-support interface during CH4 and H2 dissociation on Ni/γ-Al2O3: A density functional theory study [J]. The Journal of Physical Chemistry C, 2013, 117(33): 16907-16920.
SARMA P J, DOWERAH D, GOUR N K, et al. Tuning the transition barrier of H2 dissociation in the hydrogenation of CO2 to formic acid on Ti-doped Sn2O4 clusters [J]. Physical Chemistry Chemical Physics, 2021, 23(1): 204-210.
RILEY C, ZHOU S L, KUNWAR D, et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor [J]. Journal of the American Chemical Society, 2018, 140(40): 12964-12973.
GRIBOV E N,BERTARIONES, SCARANO D,et al. Vibrational and thermodynamic properties of H2 adsorbed on MgO in the 300-20 K interva [J]. The Journal of Physical Chemistry B, 2004, 108(41): 16174-16186.
CHEN H P, LIU P, LIU J Q, et al. Mechanochemical in-situ incorporation of Ni on MgO/MgH2 surface for the selective O-/C-terminal catalytic hydrogenation of CO2 to CH4 [J]. Journal of Catalysis, 2021, 394: 397-405.
HUANG J, LI X, WANG X, et al. New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: Elucidating ni and MgO roles and support effects [J]. Journal of CO2 Utilization, 2019, 33: 55-63.
FENG W H, YU M M, WANG L J, et al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrOx oxide catalysts [J]. ACS Catalysis, 2021, 11(8): 4704-4711.
PAN Y X, MEI D H, LIU C J, et al. Hydrogen adsorption on Ga2O3 surface: A combined experimental and computational study [J]. The Journal of Physical Chemistry C, 2011, 115(20): 10140-10146.
AGUIRRE A, COLLINS S E. Selective detection of reaction intermediates using concentration-modulation excitation DRIFT spectroscopy [J]. Catalysis Today, 2013, 205: 34-40.
TSUNEOKA H, TERAMURA K, SHISHIDO T, et al. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2 [J]. The Journal of Physical Chemistry C, 2010, 114(19): 8892-8898.
MARTIN O, MARTIN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265.
YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface [J]. The Journal of Physical Chemistry C, 2012, 116(14): 7817-7825.
LI Z R, HUANG W X. Hydride species on oxide catalysts [J]. Journal of Physics Condensed Matter, 2021, 33: 433001.
HU J T, YU L, DENG J, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol [J]. Nature Catalysis, 2021, 4(3): 242-250.
胡意文, 达志坚, 王子军. 氢气在二硫化钼上活化机理的研究进展[J]. 石油学报(石油化工), 2015, 31(3): 812-820.
HU Y W, DA Z J, WANG Z J. Progress in mechanism study of hydrogen activation on MoS2 [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(3): 812-820.
BREYSSE M, FURIMSKY E, KASZTELAN S, et al. Hydrogen activation by transition metal sulfides [J]. Catalysis Review, Science and Engineering, 2002, 44(4): 651-735.
CAI H T, SCHIMMENTI R, NIE H Y, et al. Mechanistic role of the proton-hydride pair in heteroarene catalytic hydrogenation [J]. ACS Catalysis, 2019, 9(10): 9418-9437.
ALBANI D, SHAHROKHI M, CHEN Z P, et al. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation [J]. Nature Communitions, 2018, 9(1): 2634.
ZHOU H, CHEN L, GUO Y, et al. Hydrogenolysis cleavage of the Csp2—Csp3 bond over a metal-free NbOPO4 catalyst [J]. ACS Catalysis, 2022, 12(9): 4806-4812.
WU Z L,YANG S W, XIN Q, et al.In situ IR spectroscopic studies on molybdenum nitride catalysts: Active sites and surface reactions [J]. Catalysis Surveys from Asia, 2003, 7:103-119.
WYVRATT B M, GAUDET J R, PARDUE D B, et al. Reactivity of hydrogen on and in nanostructured molybdenum nitride: Crotonaldehyde hydrogenation [J]. ACS Catalysis, 2016, 6(9): 5797-5806.
LI Z R, HUANG W X. Reactivity of hydrogen species on oxide surfaces [J]. Science China Chemistry, 2021, 64(7): 1076-1087.
YAN H, LV H F, YI H, et al. Understanding the underlying mechanism of improved selectivity in Pd1 single-atom catalyzed hydrogenation reaction [J]. Journal of Catalysis, 2018, 366: 70-79.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构