1.上海应用技术大学 化学与环境工程学院,上海 201418
2.上海应用技术大学 生态技术与工程学院,上海 201418
3.上海应用技术大学 轨道交通学院,上海 201418
汪晨(1999—),硕士研究生,研究方向为新污染物的藻类毒理,E-mail:1537997151@qq.com。
叶璟(1983—),博士,副教授,研究方向为污染物的生态毒理,E-mail:yejinganna@sit.edu.cn。
扫 描 看 全 文
汪晨, 孙进童, 赵长宁, 等. 微藻光合固碳技术及相应光生物反应器的研究进展[J]. 低碳化学与化工, 2023,48(5):95-102.
WANG Chen, SUN Jintong, ZHAO Changning, et al. Research progress on microalgae photosynthetic carbon fixation technology and corresponding photobioreactors[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):95-102.
汪晨, 孙进童, 赵长宁, 等. 微藻光合固碳技术及相应光生物反应器的研究进展[J]. 低碳化学与化工, 2023,48(5):95-102. DOI: 10.12434/j.issn.2097-2547.20230067.
WANG Chen, SUN Jintong, ZHAO Changning, et al. Research progress on microalgae photosynthetic carbon fixation technology and corresponding photobioreactors[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):95-102. DOI: 10.12434/j.issn.2097-2547.20230067.
社会经济与工业化飞速发展,导致二氧化碳(CO,2,)排放量与日俱增,温室效应日渐严重,碳减排已成为亟待解决的全球性环境问题。在常见的CO,2,去除方法中,生物固碳技术具有经济、可持续和副作用最小的优势。其中,微藻固碳技术是通过微藻自身的光合作用机制实现固碳目的。微藻将CO,2,转化为脂质、蛋白质等细胞组分,经进一步分离提取,可制成多种高附加值化工产品,全过程绿色、安全且稳定,对有效缓解全球温室效应意义重大。首先阐述了微藻光合固碳技术原理、优点,及其生物质资源在各领域的应用;然后对影响微藻固碳效率的因素进行了分析;最后总结了光生物反应器的研究现状,并对光反应器的设计优化和发展提出了建议。
Due to the rapid development of the social economy and industrialization, CO,2, emissions are increasing day by day, leading to an increasingly serious greenhouse effect. Carbon emission reduction has become a global environmental problem demanding prompt solutions. Biological carbon sequestration technology has the advantages of economic sustainability and minimal side effects among the common CO,2, removal methods. Microalgae carbon fixation technology achieves the purpose of carbon fixation through the photosynthesis mechanism of microalgae itself. CO,2, is converted into cellular components like lipids and proteins, and each component can be further separated and extracted to make high-value-added chemical products. The whole process is safe and stable, which is of great significance in alleviating the greenhouse effect. The principles and advantages of microalgae photosynthetic carbon fixation technology and the application of biomass resources in various fields were expounded, and the influencing factors of microalgae carbon fixation efficiency were analyzed. Finally, the research status of photoreactors was summarized, and suggestions for the design optimization and development of photoreactors were proposed.
微藻光合固碳CO2浓缩机制光生物反应器
microalgaephotosynthetic carbon fixationCO2 concentrating mechanismphotobioreactor
GUTIÉRREZ R, GUTIÉRREZ-SÁNCHEZ R, NAFIDI A. Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain [J]. Stoch Env Res Risk A, 2008, 22(1): 57-66.
PIRES J C M, ALVIM-FERRAZ M C M, MARTINS F G, et al. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept [J]. Renew Sust Energ Rev, 2012, 16(5): 3043-3053.
李伟, 康少锋. 微藻固碳技术研究现状及发展思路[J]. 生物产业技术, 2011, (6): 22-27.
陆诗建, 杨向平, 李清方, 等. 烟道气二氧化碳分离回收技术进展[J]. 应用化工, 2009, 38(8): 1207-1209.
周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学: 化学, 2014, 44(1): 63-78.
石英杰, 吴昊, 王丽娟, 等. CO2固定化及资源化的技术进展[J]. 中国环保产业, 2006, (1): 40-42.
许岩. 微藻高效固碳并联产高附加值产物的初步研究[D]. 武汉: 中国科学院武汉植物园, 2017.
赵旭, 邢华斌, 李如龙, 等. 离子液体在气体分离中的应用[J]. 化学进展, 2011, 23(11): 2258-2268.
MANDAL L, YANG K R, MOTAPOTHULA M R, et al. Investigating the role of copper oxide in electrochemical CO2 reduction in real time [J]. ACS Appl Mater Interfaces, 2018, 10(10): 8574-8584.
王晓刚, 李立清, 唐琳, 等. 温室气体CO2的减排技术研究[J]. 能源环境保护, 2006, (2): 1-5+24.
LI W, XU X G, MEGUMU F, et al. Response of microalgae to elevated CO2 and temperature: Impact of climate change on freshwater ecosystems [J]. Environ Sci Pollut Res Int, 2016, 23(19): 19847-19860.
BRENNAN L, OWENDE P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products [J]. Renew Sust Energ Rev, 2010, 14(2): 557-577.
李永富. 内置LED光源的新型平板式光生物反应器用于微藻高效固定CO2 [D]. 青岛: 中国海洋大学, 2014.
段丹如. 光生物反应器内微藻生物膜生长特性及固碳性能强化[D]. 徐州: 中国矿业大学, 2019.
WANG B, LI Y Q, WU N, et al. CO2 bio-mitigation using microalgae [J]. Appl Microbiol Biotechnol, 2008, 79(5): 707-718.
ALAMI A H, ALASAD S, ALI M, et al. Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production [J]. Sci Total Environ, 2020, 759: 143529.
秦燕, 范波, 苗贵东. 衣藻二氧化碳浓缩机制及其调控的研究进展[J]. 安徽农业科学, 2021, 49(4): 20-25+28.
CHISTI Y. Biodiesel from microalgae [J]. Biotechnol Adv, 2007, 25(3): 294-306.
季凤云, 明红霞, 李洪波, 等. 南海表层海水参与卡尔文循环的固碳基因多样性研究[J]. 环境科学学报, 2016, 36(11): 4037-4043.
WEI L, WANG Q T, XIN Y, et al. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase [J]. Algal Res, 2017, 27: 366-375.
HU Q, SOMMERFELD M, JARVIS E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances [J]. Plant J, 2008, 54(4): 621-639.
WANG L, LI Y, CHEN P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp [J]. Bioresour Technol, 2010, 101(8): 2623-2628.
ZHOU W G, LI Y C, MIN M, et al. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production [J]. Bioresour Technol, 2011, 102(13): 6909-6919.
LI Y C, CHEN Y F, CHEN P, et al. Characterization of a microalga Chlorella sp. Well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production [J]. Bioresour Technol, 2011, 102(8): 5138-5144.
傅晓娜, 姚刚. 微藻污水处理与生物质能耦合技术综述[J]. 绿色科技, 2011, (11): 100-104.
廖莎, 薛冬, 李晓姝, 等. 微藻固碳技术基础及其生物质应用研究进展[J]. 当代化工, 2020, 49(6): 1175-1179+1183.
CHOUDHARY P, ASSEMANY P P, NAAZ F, et al. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass [J]. Sci Total Environ, 2020, 726: 137961.
MADEIRA M S, CARDOSO C, LOPES P A, et al. Microalgae as feed ingredients for livestock production and meat quality: A review [J]. Livest Sci, 2017, 205: 111-121.
YEGANEH S, ADEL M. Effects of dietary algae (Sargassum ilicifolium) as immunomodulator and growth promoter of juvenile great sturgeon (Huso huso Linnaeus, 1758) [J]. J Appl Phycol, 2019, 31(3): 2093-2102.
郭宝文, 李煦, 宗保宁, 等. 微藻固碳实现CO2减排与生物质增值[J]. 石油学报(石油加工), 2023, 39(3): 668-678.
CHOWDHURY H, LOGANATHAN B. Third-generation biofuels from microalgae: A review [J]. Curr Opin Green Sustain Chem, 2019, 20: 39-44.
牛旭东, 李梅, 王宁, 等. 利用微藻处理废水研究进展[J]. 山东农业科学, 2022, 54(2): 146-152.
SIVASANGARI S, VELRAJAN T, NANDHINI J. A comparative study on the performance of conventional photobioreactors and ALGADISK in CO2 sequestration—a review [J]. Energy Sources Part A, 2019, 43(24): 1-6.
王琳, 朱振旗, 徐春保, 等. 微藻固碳与生物能源技术发展分析[J]. 中国农业大学学报, 2012, 17(6): 247-252.
ZHAO B T, SU Y X. Process effect of microalgal-carbon dioxide fixation and biomass produc5tion: A review [J]. Renew Sust Energ Rev, 2014, 31: 121-132.
WU Y P, GAO K S, RIEBESELL U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum [J]. Biogeosciences, 2010, 7(9): 2915-2923.
李林, 王帅, 郑立. 海洋微藻固碳及其培养技术的研究进展[J]. 海洋科学, 2015, 39(3): 135-140.
徐敏一, 陈珊, 刘国祥, 等. 极高CO2胁迫对被甲栅藻Scenedesmus armatus生理活性和细胞结构影响[J]. 武汉植物学研究, 2004, 22(5): 439-444.
SATOH A, KURANO N, MIYACHI S. Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2 [J]. Photosynth Res, 2001, 68(3): 215-224.
ZHOU G J, YING G G, LIU S, et al. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae [J]. Environ Sci Process Impacts, 2014, 16(8): 2018-2027.
SANTOS L O, DEAMICI K M, MENESTRINO B C, et al. Magnetic treatment of microalgae for enhanced product formation [J]. World J Microbiol Biotechnol, 2017, 33(9): 1-6.
POPE D H. Effects of light intensity, oxygen concentration, and carbon dioxide concentration on photosynthesis in algae [J]. Microb Ecol, 1975, 2(1): 1-16.
ALLEN M D, DEL CAMPO J A, KROPAT J, et al. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2007, 6(10): 1841-1852.
CHEN C Y, YEH K L, AISYAH R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review [J]. Bioresour Technol, 2010, 102(1): 71-81.
CHE C A, KIM S H, HONG H J, et al. Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system [J]. Bioresour Technol, 2019, 285: 121323.
孙岁寒, 段舜山. 海洋微藻四列藻对光周期改变的响应[J]. 生态科学, 2007, (4): 293-297.
ESTEVES A F, SOARES O S G P, VILAR V J P, et al. The effect of light wavelength on CO2 capture, biomass production and nutrient uptake by green microalgae: A step forward on process integration and optimization [J]. Energies, 2020, 13(2): 333.
MUÑOZ R, GUIEYSSE B. Algal-bacterial processes for the treatment of hazardous contaminants: A review [J]. Water Res, 2006, 40(15): 2799-2815.
SECKBACH J, KAPLAN I R. Growth pattern and 13C12C isotope fractionation of Cyanidium caldarium and hot spring algal mats [J]. Chem Geol, 1973, 12(3): 763-766.
MIYAIRI S. CO2 assimilation in a thermophilic cyanobacterium [J]. Energy Convers Manage, 1995, 36(6/7/8/9): 763-766.
欧阳峥嵘, 温小斌, 耿亚红, 等. 光照强度、温度、pH、盐度对小球藻(Chlorella)光合作用的影响[J]. 武汉植物学研究, 2010, 28(1): 49-55.
徐宁, 吕颂辉, 陈菊芳, 等. 温度和盐度对锥状斯氏藻生长的影响[J]. 海洋环境科学, 2004, (3): 36-38.
QIANG H U, ZARMI Y, RICHMOND A. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria) [J]. Eur J Phycol, 1998, 33(2): 165-171.
吴运东, 吴沿友, 李潜, 等. pH与氟对莱茵衣藻和蛋白核小球藻胞外碳酸酐酶活性及光合效率的影响[J]. 农业环境科学学报, 2011, 30(10): 1972-1977.
YANG M, MENG Y Y, CHU Y D, et al. Triacylglycerol accumulates exclusively outside the chloroplast in short-term nitrogen-deprived Chlamydomonas reinhardtii [J]. Biochim Biophys Acta Mol Cell Biol Lipids. 2018, 1863(12): 1478-1487.
GAO B Y, XIA S, LEI X Q, et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem [J]. J Appl Phycol, 2018, 30: 215-229.
WYKOFF D D, DAVIES J P, MELIS A, et al. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii [J]. Plant Physiol, 1998, 117(1): 129-139.
王长海, 鞠宝, 董言梓, 等. 光生物反应器及其研究进展[J]. 海洋通报, 1998, (6): 79-86.
HU B, ZHOU W G, MIN M, et al. Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production [J]. Appl Energy, 2013, 107: 255-263.
HE L C, YANG W M, GUAN C F, et al. Microalgal cultivation and hydrodynamic characterization using a novel tubular photobioreactor with helical blade rotors [J]. Bioprocess Biosyst Eng, 2017, 40(12): 1743-1751.
KAEWPINTONG K, SHOTIPRUK A, POWTONGSOOK S, et al. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in air lift bioreactor [J]. Bioresour Technol, 2007, 98(2): 288-295.
许波, 王长海. 微藻的平板式光生物反应器高密度培养[J]. 食品与发酵工业, 2003, (1): 36-40.
李兴武, 李元广, 沈国敏, 等. 普通小球藻异养-光自养串联培养的培养基[J]. 过程工程学报, 2006, 6(2): 277-280.
GE Y M, LIU J Z, TIAN G M. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor [J]. Bioresour Technol, 2011, 102(1): 130-134.
王丽艳. 微藻固定烟气中的发展及可行性探讨[J]. 绿色科技, 2012, (9): 182-183.
UGWU C U, AOYAGI H, UCHIYAMA H. Photobioreactors for mass cultivation of algae [J]. Bioresour Technol, 2008, 99(10): 4021-4028.
刘天中, 张维, 王俊峰, 等. 微藻规模培养技术研究进展[J]. 生命科学, 2014, 26(5): 509-522.
程军, 庄良, 黄云, 等. 平板式微藻光反应器的流场优化及闪光效应[J]. 浙江大学学报(工学版), 2013, 47(11): 1958-1964.
SIERRA E, ACIEN F G, FERNANDEZ J M, et al. Characterization of a flat plate photobioreactor for the production of microalgae [J]. Chem Eng, 2008, 138: 136-147.
齐祥明, 崔海龙. 基于CFD 数值模拟的平板式微藻光生物反应器比较[J]. 农业工程学报, 2015, 31(13): 215-221.
沈德凤, 郝春晖, 杨明德, 等. 微藻的研究现状和药用价值[J]. 中外健康文摘(医药月刊), 2007, 4(5): 18-19.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构