中海石油气电集团技术研发中心,北京 100028
戴若云(1996—),博士,工程师,研究方向为氢能,E-mail:dairy@cnooc.com.cn。
扫 描 看 全 文
戴若云,侯建国,王秀林等.等离激元光催化CO2转化催化剂研究进展[J].低碳化学与化工,2023,48(06):10-16.
DAI Ruoyun,HOU Jianguo,WANG Xiulin,et al.Research progress of plasmon photocatalysts for CO2 conversion[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):10-16.
戴若云,侯建国,王秀林等.等离激元光催化CO2转化催化剂研究进展[J].低碳化学与化工,2023,48(06):10-16. DOI: 10.12434/j.issn.2097-2547.20230063.
DAI Ruoyun,HOU Jianguo,WANG Xiulin,et al.Research progress of plasmon photocatalysts for CO2 conversion[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):10-16. DOI: 10.12434/j.issn.2097-2547.20230063.
CO,2,的资源化利用对实现碳循环意义重大。在众多CO,2,化学利用手段中,光催化CO,2,转化被认为是最为绿色和清洁的方案,但受限于较低的反应转化效率,尚未能取得大规模应用。等离激元光催化剂可利用表面等离激元共振现象,有效应对C==O键活化困难、光能利用不足和光生载流子寿命短等问题,提高CO,2,的转化效率和产物选择性。为了促进光催化CO,2,转化技术的商业化进程,等离激元光催化CO,2,转化催化剂的性能仍有待进一步改进。通过介绍等离激元光催化CO,2,转化的机理和梳理讨论近年等离激元光催化CO,2,转化催化剂的研究进展,总结了等离激元光催化CO,2,转化催化剂的设计思路与调控手段,强调了提高反应转化效率和降低催化剂成本的重要性,指出了未来该催化剂的研究和发展方向。
The resource utilization of CO,2, is of great significance to the realization of carbon cycle. Photocatalytic CO,2, conversion is considered to be the greenest and cleanest method among various chemical CO,2, utilization methods, but it has not been applied on a large scale due to its low reaction conversion efficiency. The plasmon photocatalysts can take advantage of the surface plasmon resonance phenomenon to effectively deal with the problems such as the difficulty of C==O bond activation, the insufficient utilization of light energy and the short life of photo-generated carrier, so as to improve the CO,2, conversion efficiency and product selectivity. In order to promote the commercialization of photocatalytic CO,2, conversion technology, the performance of plasmon photocatalytic CO,2, conversion catalysts still needs to be further improved. Herein, by introducing the mechanism and discussing the recent research progress of plasmon photocatalytic CO,2, conversion catalysts, the design ideas and regulation methods were summarized, the importance of improving reaction conversion efficiency and reducing catalyst cost was emphasized, and the future research and development direction was pointed out.
CO2化学利用光催化剂等离激元现象
chemical CO2 utilizationphotocatalystsplasmon phenomenon
MITTAL D, AHLAWAT M, GOVIND R V. Recent progress and challenges in plasmon‐mediated reduction of CO2 to chemicals and fuels [J]. Adv Mater Inter, 2022, 9(12):2102383.
INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature, 1979, 277(5698): 637-638.
高娃, 熊宇杰, 吴聪萍, 等. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14.
吕豪杰, 杨传玺, 王小宁, 等. 等离激元光催化研究进展[J]. 环境化学, 2021, 40(5): 1546-1557.
张宝宝, 张成云, 张正龙, 等. 表面等离激元调控化学反应[J]. 物理学报, 2019, 68(14): 75-89.
罗志斌, 王小博, 裴爱国, 等. 离激元效应促进的光催化分解水制氢[J]. 南方能源建设, 2020, 7(2): 20-27.
佟振伟, 钟振成. 光催化CO2转化研究综述[J]. 洁净煤技术, 2022, 28(6): 91-102.
姜海洋, 刘慧玲. 半导体复合材料光催化还原CO2的研究进展[J]. 硅酸盐学报, 2022, 50(7): 2024-2055.
PARK M Y, KWAK B S, JO S W, et al. Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu-TiO2 double-layered films [J]. Energy Convers Manage, 2015, 103: 431-438.
ZHANG Y C, HE S, GUO W X, et al. Surface-plasmon-driven hot electron photochemistry [J]. Chem Rev, 2017, 118(6): 2927-2954.
芦一瑞, 严蕾, 张成云, 等. 局域表面等离激元诱导的光催化机制[J]. 陕西师范大学学报(自然科学版), 2022, 50(1): 32-42.
KIM S M, LEE S W, MOON S Y, et al. The effect of hot electrons and surface plasmons on heterogeneous catalysis [J]. J Phys Condens Matter, 2016, 28(25): 254002.
GAN Z X, WU X L, MENG M, et al. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites [J]. ACS nano, 2014, 8(9): 9304-9310.
KALELE S A, TIWARI N R, GOSAVI S, et al. Plasmon-assisted photonics at the nanoscale [J]. J Nanophoton, 2007, 1(1): 12501.
NIKOOBAKHT B, EL-SAYED M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem Mater, 2003, 15(10): 1957-1962.
SUN Y G, XIA Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm [J]. Analyst, 2003, 128(6): 686-691.
WEI S J, HENG Q Q, WU Y F, et al. Improved photocatalytic CO2 conversion efficiency on Ag loaded porous Ta2O5 [J]. Appl Surf Sci, 2021, 563(15): 150273.
NEAŢU S, MACIA-AGULLÓ J A, CONCEPCIÓN P, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water [J]. J Am Chem Soc, 2014, 136(45): 15969-15976.
ZHANG Z, WANG Z, CAO S W, et al. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion [J]. J Phys Chem C, 2013, 117(49): 25939-25947.
SHAO T, WANG X, DONG H, et al. Stacked plasmonic metamaterial with strong localized electric field enables highly efficient broadband light‐driven CO2 hydrogenation [J]. Adv Mater, 2022, 34: 2202367.
王茜, 梁红艳. 等离激元纳米海胆结构增强热载流子的产生与注入[J].中国激光, 2023, 50(1): 210-217.
LI Y, LIU Z, LI Z, et al. Renewable biomass-derived carbon-supported g-C3N4 doped with Ag for enhanced photocatalytic reduction of CO2 [J]. J Colloid Interf Sci, 2022, 606: 1311-1321.
HAN X L, LI M W, MA Y N, et al. Thermal coupled photocatalysis to enhance CO2 reduction activities on Ag loaded g-C3N4 catalysts [J]. Surf Interfaces, 2021, 23: 101006.
ZHANG T T, SHANG H S, ZHANG B, et al. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction [J]. ACS Appl Mater Inter, 2021, 13(14): 16536-16544.
WANG C, RANASINGHA O, NATESAKHAWAT S, et al. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2 [J]. Nanoscale, 2013, 5(15): 6968-6974.
THANG N Q, SABBAH A, CHEN L C, et al. Localized surface plasmonic resonance role of silver nanoparticles in the enhancement of long-chain hydrocarbons of the CO2 reduction over Ag-gC3N4/ZnO nanorods photocatalysts [J]. Chem Eng Sci, 2021, 229: 116049.
SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts [J]. Chem Rev, 2022, 122(11): 10484-10537.
LIU E Z, QI L L, BIAN J J, et al. A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol [J]. Mater Res Bull, 2015, 68: 203-209.
LI X W, SUN Y J, XIONG T, et al. Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis [J]. J Catal, 2017, 352: 102-112.
LI J, LOU Z Z, LI B J. Nanostructured materials with localized surface plasmon resonance for photocatalysis [J]. Chin Chem Lett, 33(3): 1154-1168.
LI J, YE Y H, YE L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x [J]. J Mater Chem A, 2019, 7(6): 2821-2830.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构