华东理工大学 化工学院 化学工程联合国家重点实验室,上海 200237
高贤清(1999—),硕士研究生,研究方向为反应器模拟与优化,E-mail:gxqingya@163.com。
宋楠(1983—),博士,讲师,研究方向为催化反应工程,E-mail:cuiky@ecust.edu.cn。
扫 描 看 全 文
高贤清,宋楠,叶光华等.新型欧姆加热式反应器强化甲烷蒸汽重整的过程分析和优化[J].低碳化学与化工,2024,49(01):76-84.
GAO Xianqing,SONG Nan,YE Guanghua,et al.Process analysis and optimization of innovative Ohmic-heating reactor for enhanced steam methane reforming[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):76-84.
高贤清,宋楠,叶光华等.新型欧姆加热式反应器强化甲烷蒸汽重整的过程分析和优化[J].低碳化学与化工,2024,49(01):76-84. DOI: 10.12434/j.issn.2097-2547.20230047.
GAO Xianqing,SONG Nan,YE Guanghua,et al.Process analysis and optimization of innovative Ohmic-heating reactor for enhanced steam methane reforming[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):76-84. DOI: 10.12434/j.issn.2097-2547.20230047.
传统甲烷蒸汽重整(SMR)反应器(cSMR反应器)中容易出现较大的径向温度梯度,增加了催化剂积炭失活的风险。提出了一种新型的含内外管欧姆加热蒸汽重整固定床反应器(eSMR反应器),以欧姆加热替代了传统工业反应器的燃烧供热方式。通过二维拟均相固定床反应器模拟,比较了eSMR与cSMR反应器的性能差异,分析了eSMR反应器结构及操作条件对其性能的影响。结果表明,相比于cSMR,eSMR反应器出口的平均甲烷转化率和平均温度分别高出26.6%和121 K,且径向温度分布更加均匀;eSMR反应器的内外管直径之比为0.589时,其径向温度梯度最小;增加入口温度、加热电压和水碳比均会提高eSMR反应器出口的平均甲烷转化率和平均温度,增加入口压力的影响相反。本研究可为欧姆加热蒸汽重整反应器的开发提供一定的借鉴。
Conventional steam methane reforming (SMR) reactor (cSMR reactor) often exhibit significant radial temperature gradients, increasing the risk of catalyst deactivation due to carbon deposits. A novel design, the Ohmic-heating fixed-bed reactor with inner and outer tubes for steam reformingr (eSMR reactor), has been proposed to replace the conventional combustion-based heating method employed in industrial reactor. Using a two-dimensional quasi-homogeneous fixed-bed reactor simulation, the performance differences between eSMR and cSMR reactor were compared, and the effects of eSMR reactor structure and operating conditions on its performance were analyzed. The results show that compared to cSMR, eSMR reactor exhibits a 26.6% higher outlet average methane conversion rate, a 121 K higher outlet average temperature, and a more uniform radial temperature distribution. When the inner-to-outer tube diameter ratio is 0.589, the radial temperature gradient is minimized in eSMR reactor. Increasing the inlet temperature, heating voltage, and steam-methane ratio all enhance the outlet average methane conversion rate and outlet average temperature in eSMR reactor, while the effect of increasing inlet pressure is the opposite. This research can offer valuable insights for the development of Ohmic heating-based steam methane reforming reactors.
欧姆加热甲烷蒸汽重整固定床反应器数学模型优化设计
Ohmic-heatingsteam methane reformingfixed-bed reactormathematical modeloptimal design
LAPRUNE D, THEODORIDI C, TUEL A, et al. Effect of polyaromatic tars on the activity for methane steam reforming of nickel particles embedded in silicalite-1 [J]. Applied Catalysis B: Environmental, 2017, 204: 515-524.
邹才能, 张福东, 郑德温, 等. 人工制氢及氢工业在我国“能源自主”中的战略地位[J]. 天然气工业, 2019, 39(1): 1-10.
ZOU C N, ZHANG F D, ZHENG D W, et al. Strategic role of the synthetic hydrogen production and industry in energy independence of China [J]. Natural Gas Industry, 2019, 39(1): 1-10.
王嘉琦, 王秋颖, 朱桐慧, 等. 甲烷重整制氢的研究现状分析[J]. 现代化工, 2020, 40(7): 15-20.
WANG J Q, WANG Q Y, ZHU T H, et al. A review on research status of hydrogen production by methane reforming [J]. Modern Chemical Industry, 2020, 40(7): 15-20.
FAROOQI A S, YUSUF M, MOHD ZABIDI N A, et al. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts [J]. International Journal of Hydrogen Energy, 2021, 46(60): 31024-31040.
黄兴, 赵博宇, LOUGOU B G, 等. 甲烷水蒸气重整制氢研究进展[J]. 石油与天然气化工, 2022, 51(1): 53-61.
HUANG X, ZHAO B Y, LOUGOU B G, et al. Research progress of methane steam reforming for hydrogen production [J]. Chemical Engineering of Oil & Gas, 2022, 51(1): 53-61.
FAROOQI A S, AL-SWAI B M, RUSLAN F H, et al. Catalytic conversion of greenhouse gases (CO2 and CH4) to syngas over Ni-based catalyst: Effects of Ce-La promoters [J]. Arabian Journal of Chemistry, 2020, 13(6): 5740-5749.
SEHESTED J. Four challenges for nickel steam-reforming catalysts [J]. Catal Today, 2006, 111(1/2): 103-110.
RIEKS M, BELLINGHAUSEN R, KOCKMANN N, et al. Experimental study of methane dry reforming in an electrically heated reactor [J]. International Journal of Hydrogen Energy, 2015, 40(46): 15940-15951.
ANEKE M, WANG M. Energy storage technologies and real life applications—A state of the art review [J]. Applied Energy, 2016, 179: 350-377.
RENDA S, CORTESE M, IERVOLINO G, et al. Electrically driven SiC-based structured catalysts for intensified reforming processes [J]. Catalysis Today, 2022, 383: 31-43.
WANG Q, REN Y, KUANG X, et al. Electrically heated monolithic catalyst for in-situ hydrogen production by methanol steam reforming [J]. International Journal of Hydrogen Energy, 2023, 48(2): 514-522.
WISMANN S T, ENGBÆK J S, VENDELBO S B, et al. Electrified methane reforming: A compact approach to greener industrial hydrogen production [J]. Science, 2019, 364(6442): 756-759.
WISMANN S T, ENGBÆK J S, VENDELBO S B, et al. Electrified methane reforming: Elucidating transient phenomena [J]. Chemical Engineering Journal, 2021, 425: 131509.
WISMANN S T, ENGBÆK J S, VENDELBO S B, et al. Electrified methane reforming: Understanding the dynamic interplay [J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23380-23388.
ZHENG L, AMBROSETTI M, MARANGONI D, et al. Electrified methane steam reforming on a washcoated SiSiC foam for low-carbon hydrogen production [J]. American Institute of Chemical Engineers, 2023, 69(1): e17620.
叶逢春. 铁铬铝电热合金表面绝缘及抗氧化机理研究 [D]. 杭州: 浙江理工大学, 2010
YE F C. The mechanism study on surface insulation and oxidation resistance of Fe-Cr-Al alloys [D]. Hangzhou: Zhejiang Sci-Tech University, 2010.
XU J, FROMENT G F. Methane steam reforming: II. Diffusional limitations and reactor simulation [J]. American Institute of Chemical Engineers, 1989, 35(1): 97-103.
DIXON A G. Heat transfer in fixed beds at very low (< 4) tube-to-particle diameter ratio [J]. Industrial & Engineering Chemistry Research, 1997, 36(8): 3053-3064.
DIXON A G. Local transport and reaction rates in a fixed bed reactor tube: Endothermic steam methane reforming [J]. Chemical Engineering Science, 2017, 168: 156-177.
WANG H, DUAN X, LIU X, et al. Influence of tubular reactor structure and operating conditions on dry reforming of methane [J]. Chemical Engineering Research and Design, 2018, 139: 39-51.
XU J, FROMENT G F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics [J]. American Institute of Chemical Engineers, 1989, 35(1): 88-96.
邢宜泺, 周达恢. 1400 °C铁铬铝电热合金[J]. 上海冶金, 1980, (4): 55-57.
XING Y L, ZHOU D H. 1400 ℃ Fe-Cr-Al electric heating alloy [J]. Shanghai Metallurgy, 1980, (4): 55-57.
雷晓健, 王元华, 张英, 等. 甲烷蒸汽重整制氢反应器的模拟与分析 [J]. 天然气化工—C1化学与化工, 2017, 42(5): 67-76.
LEI X J, WANG Y H, ZHANG Y, et al. Simulation and analysis of reactor for methane steam reforming [J]. Natural Gas Chemical Industry, 2017, 42(5): 67-76.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构