1.太原理工大学 化学工程与技术学院,山西 太原 030024
宋志强(1995—),硕士研究生,研究方向为复合材料制备及气体吸附分离,E-mail:1332378163@qq.com。
杨江峰(1982—),博士,教授,研究方向为低浓度甲烷综合利用基础理论和关键技术,E-mail:yangjiangfeng@tyut.edu.cn。
扫 描 看 全 文
宋志强, 王玉高, 张宇姝, 等. 活性炭/金属有机骨架复合吸附材料的制备及其CH4/N2吸附分离性能研究[J]. 低碳化学与化工, 2023,48(5):163-169.
SONG Zhiqiang, WANG Yugao, ZHANG Yushu, et al. Study on preparation of activated carbon/metal-organic frameworks composite adsorbent materials and their CH4/N2 adsorption and separation performance[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):163-169.
宋志强, 王玉高, 张宇姝, 等. 活性炭/金属有机骨架复合吸附材料的制备及其CH4/N2吸附分离性能研究[J]. 低碳化学与化工, 2023,48(5):163-169. DOI: 10.12434/j.issn.2097-2547.20230044.
SONG Zhiqiang, WANG Yugao, ZHANG Yushu, et al. Study on preparation of activated carbon/metal-organic frameworks composite adsorbent materials and their CH4/N2 adsorption and separation performance[J]. Low-carbon Chemistry and Chemical Engineering, 2023,48(5):163-169. DOI: 10.12434/j.issn.2097-2547.20230044.
煤层气富含甲烷(CH,4,),但井下抽采时会混入大量空气导致CH,4,浓度低、利用难度大,因此富集提浓并高效利用低浓度煤层气的关键是实现CH,4,与氮气(N,2,)的高效分离。以三水硝酸铜(Cu(NO,3,),2,•3H,2,O)和异烟酸(HINA)为原料,通过逐步合成法制备了活性炭/金属有机骨架(AC/MOFs)复合吸附材料,通过X射线衍射、热重分析和扫描电子显微镜等进行了表征,并研究了气体吸附性能、选择性以及吸附热。结果表明,制备的AC/Cu(INA),2,复合材料具有AC和Cu(INA),2,的特征衍射峰,并且观察到了Cu(INA),2,在AC上的生长。AC/Cu(INA),2,复合材料在100 kPa、298 K下的CH,4,吸附量为12.6 cm,3,/g,CH,4,/N,2,选择性为5.5(比原材料AC提升了17.3%),并且CH,4,(14.9 kJ/mol)的吸附热高于N,2,(11.9 kJ/mol)。
Coal bed methane is rich in methane (CH,4,), but it is mixed with a lot of air during underground mining, resulting in low CH,4 ,concentration and difficult utilization. Therefore, the key to enrichment and efficient utilization of low concentrate coal bed methane is efficient separation of CH,4, and nitrogen (N,2,). Activated carbon/metal organic frameworks (AC/MOFs) composite adsorbent materials were prepared from copper nitrate trihydrate (Cu(NO,3,),2,•3H,2,O) and isonicotinic acid (HINA) by stepwise synthesis and characterised by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy, and the gas adsorption properties, selectivity and heat of adsorption were investigated. The results show that the prepared AC/Cu(INA),2, composite material has characteristic diffraction peaks of AC and Cu(INA),2, and Cu(INA),2, growth on AC is observed. AC/Cu(INA),2, composite material has a CH,4, adsorption capacity of 12.6 cm,3,/g at 100 kPa and 298 K, and a CH,4,/N,2, selectivity of 5.5 (17.3% increase compared to the raw material AC). Additionally, the adsorption heat of CH,4, (14.9 kJ/mol) is higher than that of N,2, (11.9 kJ/mol).
甲烷氮气活性炭金属有机骨架复合材料逐步合成法
methanenitrogenactivated carbonmetal-organic frameworkscomposite materialsstepwise synthesis
NIU Z, CUI X L, PHAM T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane [J]. Angew Chem Int Ed Engl, 2019, 58(30): 10138-10141.
HU J L, SUN T J, LIU X W, et al. Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution [J]. Microporous Mesoporous Mater, 2016, 225: 456-464.
SALEMAN T L, LI G, RUFFORD T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption [J]. Chem Eng J, 2015, 281: 739-748.
QIAO Z W, XU Q S, JIANG J W. High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas [J]. J Membr Sci, 2018, 551: 47-54.
KIM T H, KIM S Y, YOON T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms [J]. Chem Eng J, 2020, 399: 125717-125726.
REN X Y, SUN T J, HU J L, et al. Highly enhanced selectivity for the separation of CH4 over N2 on two ultra-microporous frameworks with multiple coordination modes [J]. Microporous Mesoporous Mater, 2014, 186: 137-145.
LI Q Z, RUAN M L, ZHENG Y N, et al. Investigation on the selective adsorption and separation properties of coal mine methane in ZIF-68 by molecular simulations [J]. Adsorption, 2016, 23(1): 163-174.
王海洋, 张信伟, 李红营, 等. 煤层气脱氧催化剂制备及其性能研究[J]. 天然气化工—C1化学与化工, 2021, 46(1): 28-33.
JU Y W, SUN Y, SA Z Y, et al. A new approach to estimate fugitive methane emissions from coal mining in China [J]. Sci Total Environ, 2016, 543: 514-523.
郭武杰, 李媛, 李世帅, 等. 高硅沸石分子筛ZSM-11用于CH4与N2吸附分离性能的研究[J]. 天然气化工—C1化学与化工, 2022, 47(1): 67-72.
HOWARTH R W. A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas [J]. Energy Sci Eng, 2014, 2(2): 47-60.
CHEN Y W, WU H X, LV D F, et al. A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane [J]. Sep Purif Technol, 2018, 204: 75-80.
YANG H W, OREFUWA S, GOUDY A. Study of mechanochemical synthesis in the formation of the metal-organic framework Cu3(BTC)2 for hydrogen storage [J]. Microporous Mesoporous Mater, 2011, 143(1): 37-45.
CHANG M, ZHAO Y J, LIU D H, et al. Methane-trapping metal-organic frameworks with an aliphatic ligand for efficient CH4/N2 separation [J]. Sustainable Energy Fuels, 2020, 4(1): 138-142.
WANG S M, SHIVANNA M, YANG Q Y. Nickel-based metal-organic frameworks for coal-bed methane purification with record CH4/N2 selectivity [J]. Angew Chem Int Ed Engl, 2022, 61(15): 1-7.
WANG S M, GUO Q P, LIANG S J, et al. Preparation of Ni-MOF-74/SBS mixed matrix membranes and its application of CH4/N2 separation [J]. Sep Purif Technol, 2018, 199: 206-213.
LUO J J, ZHU T Y, SONG Y H, et al. Improved permeability by incorporating polysiloxane in SBS block copolymers for CH4/N2 gas separation [J]. Polymer, 2017, 127: 52-65.
AL-MAYTHALONY B A, ALLOUSH A M, FAIZAN M, et al. Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes [J]. ACS Appl Mater Inter, 2017, 9(39): 33401-33407.
CHANG M, REN J H, YANG Q Y, et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation [J]. Chem Eng J, 2021, 408: 127294-127301.
SAHA D, GRAPPE H A, CHAKRABORTY A, et al. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: A review [J]. Chem Rev, 2016, 116(19): 11436-11499.
RUFFORD T E, SMART S, WATSON G C Y, et al. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies [J]. J Pet Sci Eng, 2012, 94/95: 123-154.
SHAN B H, YU J H, ARMSTRONG M R, et al. A cobalt metal-organic framework with small pore size for adsorptive separation of CO2 over N2 and CH4 [J]. AIChE J, 2017, 63(10): 4532-4540.
BACHMAN J E, KAPELEWSKI M T, REED D A, et al. M2(m-dobdc) (M = Mn, Fe, Co, Ni) metal-organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations [J]. J Am Chem Soc, 2017, 139(43): 15363-15370.
HU J L, SUN T J, LIU X W, et al. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels [J]. RSC Adv, 2016, 6(68): 64039-64046.
YANG Z X, HUSSAIN M Z, MARíN P, et al. Enrichment of low concentration methane: An overview of ventilation air methane [J]. J Mater Chem A, 2022, 10(12): 6397-6413.
QU D L, YANG Y, LU K, et al. Microstructure effect of carbon materials on the low-concentration methane adsorption separation from its mixture with nitrogen [J]. Adsorption, 2018, 24(4): 357-369.
ZHANG P X, ZHONG Y, DING J, et al. A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO2 capture [J]. Chem Eng J, 2019, 355: 963-973.
TU S, YU L, LIN D X, et al. Robust nickel-based metal-organic framework for highly efficient methane purification and capture [J]. ACS Appl Mater Interfaces, 2022, 14(3): 4242-4250.
LV D F, WU Y, CHEN J Y, et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal‐mine methane [J]. AIChE J, 2020, 66(9): 16287-16297.
CHEN Y, LI L B, YANG J F, et al. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2, NH3) and thermal stimulation [J]. J Solid State Chem, 2015, 226: 114-119.
MYERS A L, PRAUSNITZ J M. Thermodynamics of mixed-gas adsorption [J]. AIChE J, 1965, 11(1): 121-127.
KUMAR K V, GADIPELLI S, WOOD B, et al. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials [J]. J Mater Chem A, 2019, 7(17): 10104-10137.
SHOAEE M, ANDERSON M W, ATTFIELD M P. Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy [J]. Angew Chem Int Ed Engl, 2008, 120: 8653-8656.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构