1.陕西延长石油(集团)有限责任公司,陕西 西安 710065
2.陕西延长石油(集团)有限责任公司大连化物所 西安洁净能源(化工)研究院,陕西 西安 710065
景旭亮(1988—),博士,高级工程师,研究方向为化工过程强化技术及合成气转化,E-mail:jingxuliang23@163.com。
扫 描 看 全 文
景旭亮,陈景,李鸿雄等.乙醇催化脱氢制乙醛铜基催化剂研究进展[J].低碳化学与化工,2023,48(06):43-50.
JING Xuliang,CHEN Jing,LI Hongxiong,et al.Research progress on copper-based catalysts for ethanol catalytic dehydrogenation to acetaldehyde[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):43-50.
景旭亮,陈景,李鸿雄等.乙醇催化脱氢制乙醛铜基催化剂研究进展[J].低碳化学与化工,2023,48(06):43-50. DOI: 10.12434/j.issn.2097-2547.20230037.
JING Xuliang,CHEN Jing,LI Hongxiong,et al.Research progress on copper-based catalysts for ethanol catalytic dehydrogenation to acetaldehyde[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):43-50. DOI: 10.12434/j.issn.2097-2547.20230037.
乙醇催化脱氢制乙醛是实现煤基乙醇高效利用的关键技术路线之一,而高效催化剂,特别是铜基催化剂的开发是影响该技术产业化的核心。对乙醇催化脱氢制乙醛铜基催化剂的研究进行了综述,主要包括催化剂的载体种类(无载体、SiO,2,、ZnO、ZrO,2,、Al,2,O,3,和碳质)、前驱体种类、催化剂改性和催化剂制备方法等对催化剂性能的影响。其中,SiO,2,和碳质是较为理想的载体,采用有机铜前驱体、K或C助剂改性和蒸氨法等手段制备的铜基催化剂性能较好。但是,目前报道的催化剂的寿命很难满足工业化要求,或者反应进料当中乙醇浓度较低(≤ 15%,体积分数)。针对上述问题, 陕西延长石油(集团)有限责任公司和中国科学院兰州化学物理研究所合作开发了一种适用于纯乙醇进料的高效催化剂,催化剂寿命达到2600 h以上,具有良好的工业应用前景。
The catalytic dehydrogenation of ethanol to acetaldehyde is one of the key technological pathways for the efficient utilization of coal-based ethanol. The development of efficient catalysts, especially copper-based catalysts, plays a crucial role in influencing the industrialization of this technology. The researches on copper-based catalysts for the catalytic dehydrogenation of ethanol to acetaldehyde are summarized. This includes the types of catalyst supports (unsupported, SiO,2, ZnO, ZrO,2, Al,2,O,3, and carbon), precursor types, catalyst modification, and catalyst preparation methods, all of which have an impact on catalyst performance. Among them, SiO,2, and carbon are considered ideal catalyst supports, and copper-based catalysts prepared using organic copper precursors, K or C additives, and ammonia evaporation method exhibit better performance. However, the catalysts’ reported lifetimes currently fall short of industrial requirements, or the ethanol concentration in the feedstock is relatively low (≤ 15%, volume fraction). To address these issues, Shaanxi Yanchang Petroleum (Group) Co., Ltd. and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences jointly developed an efficient catalyst suitable for pure ethanol feeding, with a catalyst life of more than 2600 h, which has a good industrial application prospect.
乙醇乙醛铜基催化剂SiO2载体助剂蒸氨法
ethanolacetaldehydecopper-based catalystSiO2 supportadditivesammonia evaporation method
CHANG F W, KUO W Y, LEE K C. Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation [J]. Appl Catal A-Gen, 2003, 246(2): 253-264.
PANG J, YIN M, WU P, et al. Advances in catalytic dehydrogenation of ethanol to acetaldehyde [J]. Green Chem, 2021, 23(20): 7902-7916.
HUANG Y, WANG B, YUAN H, et al. The catalytic dehydrogenation of ethanol by heterogeneous catalysts [J]. Catal Sci Technol, 2021, 11(5): 1652-1664.
于倩男, 裴彦鹏, 姜娜, 等. 负载型碳化钴催化剂催化乙醇脱氢制备乙醛[J]. 济南大学学报(自然科学版), 2021, 35(3): 302-306.
袁晓路, 黄永升, 葛德强, 等. 乙醇催化脱氢合成乙醛的工艺研究[J]. 安徽化工, 2017, 43(1): 40-42.
TAGHAVI M B, PAJONK G M, TEICHNER S J. On the structure-sensitive and structure-insensitive catalytic reactions and their new characteristics, demonstrated with copper-supported catalysts [J]. J Colloid Interf Sci, 1979, 71(3): 451-465.
GUERREIRO E D, GORRIZ O F, LARSEN G, et al. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation: A comparative study using different preparation techniques [J]. Appl Catal A-Gen, 2000, 204(1): 33-48.
KULD S, THORHAUGE M, FALSIG H, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis [J]. Science, 2016, 352(6288): 969-974.
WANG B, ALBARRACÍN-SUAZO S, PAGÁN-TORRES Y, et al. Advances in methane conversion processes [J]. Catal Today, 2017, 285: 147-158.
CHENG S Q, WENG X F, WANG Q N, et al. Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen [J]. Chinese J Catal, 2022, 43(4): 1092-1100.
CHLADEK P, CROISET E, EPLING W, et al. Characterization of copper foam as catalytic material in ethanol dehydrogenation [J]. Can J Chem Eng, 2007, 85(6): 917-924.
YU D, DAI W, WU G, et al. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde [J]. Chinese J Catal, 2019, 40(9): 1375-1384.
ZHANG H, TAN H R, JAENICKE S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen [J]. J Catal, 2020, 389: 19-28.
WANG Q N, SHI L, LU A H. Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde [J]. ChemCatChem, 2015, 7(18): 2846-2852.
张悦. 乙醇催化脱氢合成乙醛Cu/SiO2催化剂的研究[D]. 天津: 天津大学, 2007.
FUJITA S, IWASA N, TANI H, et al. Dehydrogenation of ethanol over Cu/ZnO catalysts prepared from various coprecipitated precursors [J]. React Kinet Catal L, 2001, 73(2): 367-372.
SATO A G, VOLANTI D P, MEIRA D M, et al. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion [J]. J Catal, 2013, 307: 1-17.
SATO A G, VOLANTI D P, DE FREITAS I C, et al. Site-selective ethanol conversion over supported copper catalysts [J]. Catal Commun, 2012, 26: 122-126.
IWASA N, TAKEZAWA N. Reforming of ethanol-dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts [J]. B Chem Soc Jpn, 1991, 64(9): 2619-2623.
王阳. 金-铜双金属催化剂催化乙醇氧化脱氢制乙醛的研究[D]. 大连: 大连理工大学, 2016.
WANG Q N, SHI L, LI W, et al. Cu supported on thin carbon layer-coated porous SiO2 for efficient ethanol dehydrogenation [J]. Catal Sci Technol, 2018, 8(2): 472-479.
WANG Q N, SHI L, LU A H. Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde [J]. ChemCatChem, 2015, 7(18): 2846-2852.
MORALES M V, ASEDEGBEGA-NIETO E, BACHILLER-BAEZA B, et al. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite [J]. Carbon, 2016, 102: 426-436.
苑静, 杨树武, 周卓华. 负载型铜基催化剂上乙醇脱氢直接合成乙酸乙酯[J]. 辽宁师范大学学报(自然科学版), 2002, 25(1): 46-49.
TU Y J, CHEN Y W. Effects of alkaline-earth oxide additives on silica-supported copper catalysts in ethanol dehydrogenation [J]. Ind Eng Chem Res, 1998, 37(7): 2618-2622.
TU Y J, CHEN Y W. Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol [J]. Ind Eng Chem Res, 2001, 40(25): 5889-5893.
单伟伟, 常苏杰, 徐晨阳, 等. 催化剂制备方法对甲醇裂解制氢的影响[J]. 天然气化工—C1化学与化工, 2019, 44(1): 10-14.
PANG J, ZHENG M, WANG C, et al. Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation [J]. Acs Catal, 2020, 10(22): 13624-13629.
杨东元. 陕西延长石油集团与中国科学院兰州化学物理研究所的乙醇高效催化脱氢制乙醛和氢气新型高分散铜催化剂研究取得进展[J]. 石油学报(石油加工), 2022, 38(4): 979.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构