1.浙江科技学院 生物与化学工程学院,浙江 杭州 310023
2.杭州职业技术学院 生态健康学院,浙江 杭州 310018
3.中国林业科学研究院 林产化学工业研究所,江苏 南京 210042
骆美宇(1998─),硕士研究生,研究方向为生物质利用,E-mail:3383026158@qq.com。
盖希坤(1982─),博士,副教授,硕士研究生导师,研究方向为生物质能源热化学加工技术,E-mail:gaixikun@163.com。
扫 描 看 全 文
骆美宇,李音,刘玉鹏等.高温烟气活化生物炭制备活性炭及其Cu2+吸附性能[J].低碳化学与化工,2023,48(06):98-106.
LUO Meiyu,LI Yin,LIU Yupeng,et al.Preparation of activated carbon from high-temperature flue gas activated biochar and their Cu2+ adsorption performance[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):98-106.
骆美宇,李音,刘玉鹏等.高温烟气活化生物炭制备活性炭及其Cu2+吸附性能[J].低碳化学与化工,2023,48(06):98-106. DOI: 10.12434/j.issn.2097-2547.20230020.
LUO Meiyu,LI Yin,LIU Yupeng,et al.Preparation of activated carbon from high-temperature flue gas activated biochar and their Cu2+ adsorption performance[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):98-106. DOI: 10.12434/j.issn.2097-2547.20230020.
开发农林废弃生物质高效清洁制备活性炭技术,对于中国实现双碳战略具有重大意义。农林废弃生物质快速热解生成大量生物炭,如何低成本、规模化地将生物炭转化为活性炭是当前的研究热点。以马尾松生物炭为原料,采用N,2,/CO,2,混合气体模拟循环流化床高温烟气,并通入水蒸气作为活化剂,对生物炭进行活化,制备活性炭。通过单因素实验,探究了水蒸气流量、活化温度、活化时间对活性炭碘吸附值和产率的影响规律,确定了最佳制备条件。采用全自动物理化学吸附仪、扫描电镜和傅里叶变换红外光谱仪,对活性炭物化性质和结构进行了表征;考察了pH、吸附时间、活性炭投加量、Cu,2+,初始浓度(质量浓度)对活性炭Cu,2+,吸附性能的影响;采用动力学模型及等温线模型研究了活性炭吸附Cu,2+,的机制。研究表明,最佳制备条件下(高温烟气为100 mL/min、水蒸气流量为0.9 mL/min、活化温度为850 °C、活化时间为2.5 h),活性炭产率为7.32%、碘吸附值为1914 mg/g、比表面积为1556 m,2,/g,表面官能团含有O—H、C—O、C==C和C==O键等化学键。最佳吸附工艺下(pH为5.5、吸附时间为30 min、活性炭投加量为1.5 g/L、Cu,2+,初始浓度为10 mg/L),Cu,2+,最大去除率为99.97%,剩余Cu,2+,浓度为0.003 mg/L,符合我国生活饮用水标准(,<, 1 mg/L)。准二级动力学模型和Langmuir模型能更好地拟合吸附过程,吸附为单分子层化学吸附,颗粒内扩散不是唯一的控速步骤。
Developing efficient and clean technology for the preparation of activated carbon from agricultural and forestry waste biomass is of great significance for China’s dual carbon strategy. The rapid pyrolysis of agricultural and forestry waste biomass generates a large amount of biochar. The current research focus is on cost-effective and large-scale conversion of biochar into activated carbon. Using Masson pine biochar as the raw material, N,2,/CO,2, mixed gas was used to simulate the circulating fluidized bed high-temperature flue gas, and water vapor was introduced as an activating agent to prepare activated carbon through activation of the biochar. Through single-factor experiments, the influence of water vapor flow rate, activation temperature, and activation time on the iodine adsorption value and yield of activated carbon were explored to determine the optimal preparation conditions. The physicochemical properties and structure of the activated carbon were characterized using an automatic physical and chemical adsorption instrument, scanning electron microscope, and Fourier transform infrared spectroscopy. The effects of pH, adsorption time, activated carbon dosage and initial Cu,2+, concentration (mass concentration) on the adsorption performance of activated carbon for Cu,2+, were investigated. The adsorption mechanism of Cu,2+, on activated carbon was studied using kinetic and isotherm models. The research shows that under the optimal preparation conditions (high-temperature flue gas flow rate of 100 mL/min, water vapor flow rate of 0.9 mL/min, activation temperature of 850 °C and activation time of 2.5 h), the activated carbon yield is 7.32%, the iodine adsorption value is 1914 mg/g, and the specific surface area is 1556 m,2,/g. The functional groups on the surface contain various chemical bonds such as O—H, C—O, C==C and C==O bond. Under the optimal adsorption process conditions (pH of 5.5, adsorption time of 30 minutes, activated carbon dosage of 1.5 g/L and initial Cu,2+, concentration of 10 mg/L), the maximum removal rate of Cu,2+, is 99.97%, and the residual Cu,2+, concentration is 0.003 mg/L, which complies with China’s drinking water standards (< 1 mg/L). The pseudo-second-order kinetic model and Langmuir model can better fit the adsorption process, indicating that the adsorption is a monolayer chemical adsorption, and the intraparticle diffusion is not the only rate-controlling step.
生物炭高温烟气活性炭吸附动力学
biocharhigh-temperature flue gasactivated carbonadsorptionkinetics
WU T F, ZHU G W, CHEN J H, et al. In-situ observations of internal dissolved heavy metal release in relation to sediment suspension in lake Taihu, China [J]. J Environ Sci, 2020, 97: 120-131.
CHERONO F, MBURU N, KAKOI B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber [J]. Heliyon, 2021, 7(11): 08254.
任学勇, 祁项超, 曹畅, 等. “双碳”战略下生物质活性炭材料生产与应用发展探析[J]. 林产工业, 2022, 59(4): 48-51+63.
庞兆斌, 王建刚, 崔洪友, 等. 温和条件下ZnCl2原位催化松木粉快速热裂解制生物油及生物炭应用[J].燃料化学学报, 2023, 51(9): 1250-1258.
盖希坤, 刘万鹏, 李音, 等. 一种生物质气炭联产反应器及其反应方法: ZL201911040637.2 [P]. 2020-06-05.
GAI X K, LIU W P, LI YIN, et al. Biomass gas-carbon co-production reactor and reaction method thereof: US10889760B2 [P]. 2021-01-12.
韩彦雪. 热解炭与活化炭理化特性及其应用研究[D]. 北京: 北京林业大学, 2013.
王丽丽, 曹振, 刘卓, 等. 杨木炭对东北黑土吸附猪粪沼液氮素特性的影响[J]. 农业机械学报, 2020, 51(3): 295-305.
MA M J, YING H J, CAO F F, et al. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation [J]. Chinese J Chem Eng, 2020, 28(4): 1069-1076.
ETTISH M N, EL-SAYYAD G S, ELSAYED M A, et al. Preparation and characterization of new adsorbent from Cinnamon waste by physical activation for removal of Chlorpyrifos [J]. Environ Challenges, 2021, 5: 100208.
MAI N T, NGUYEN M N, TSUBOTA T, et al. Evolution of physico-chemical properties of dicranopteris linearis-derived activated carbon under various physical activation atmospheres [J]. Sci Rep, 2021, 11(1): 14430.
蒋绪, 兰新哲, 景兴鹏, 等. 不同介质下物理法活化制备兰炭基活性炭实验研究[J]. 煤炭转化, 2019, 42(2): 65-71.
SAKHIYA A K, BAGHEL P, ANAND A, et al. A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn2+ adsorption [J]. Bioresour Technol Rep, 2021, 15: 100774.
ZHANG J H, FU H, LV X S, et al. Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process [J]. Biomass Bioenerg, 2011, 35(1): 464-472.
KONG J J, YUE Q Y, HUANG L H, et al. Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation [J]. Chem Eng J, 2013, 221: 62-71.
RASHIDI N A, YUSUP S, AHMAD M M, et al. Activated carbon from the renewable agricultural residues using single step physical activation: A preliminary analysis [J]. APCBEE Procedia, 2012, 3: 84-92.
高烨, 王威, 庞丽云, 等. 一步法制备糖蜜基活性炭及其界面吸附行为[J]. 高等学校化学学报, 2017, 38(12): 2156-2162.
吴肖, 魏新莉, 赵栋, 等. 栓皮栎软木分级多孔活性炭的制备及其对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 190-196.
DARWEESH M A, ELGENDY M Y, AYAD M I, et al. Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon [J]. S Afr J Chem Eng, 2022, 40: 10-20.
高新源, 李爱民, 刘佩春, 等. 电场辅助活性炭吸附法去除水中的Cu2+ [J]. 中国环境科学, 2021, 41(2): 677-683.
YANG Y L, CANNON F S. Biomass activated carbon derived from pine sawdust with steam bursting pretreatment; perfluorooctanoic acid and methylene blue adsorption [J]. Bioresour Technol, 2022. 344: 126161.
樊相汝, 羊依金, 郭旭金, 等. 软锰矿-含油污泥基活性炭对亚甲基蓝的吸附特性[J]. 化工进展, 2022, 41(12): 6664-6671.
李鑫璐, 赵建海, 王康, 等. 氢氧化镁改性活性炭对Cu(Ⅱ)的吸附[J]. 精细化工, 2020, 37(1): 130-134+146.
IBRAHIM W M, HASSAN A F, AZAB Y A. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon [J]. Egypt J Basic Appl Sci, 2019, 3(3): 241-249.
ESPOSITO A, PAGNANELLI F, VEGLIÒ F. pH-related equilibria models for biosorption in single metal systems [J]. Chem Eng Sci, 2002, 57(3): 307-313.
KHAMWICHIT A, DECHAPANYA W, DECHAPANYA W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell [J]. Heliyon, 2022, 8(6): 09610.
ZHAO Z M, SUN W J, RAY M B. Adsorption isotherms and kinetics for the removal of algal organic matter by granular activated carbon [J]. Sci Total Environ, 2022, 806: 150885.
史盼盼, 黄钦, 米帅, 等. 甲基橙在桉木基磁性活性炭上的吸附行为[J]. 精细化工, 2020, 37(6): 1265-1273.
CAO F J, LIAN C, YU J G, et al. Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes [J]. Bioresour Technol, 2019, 276: 211-218.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构