北京低碳清洁能源研究院,北京 102211
邱正璞(1990—),硕士,工程师,研究方向为C1化工与CO2转化利用,E-mail:zhengpu.qiu@chnenergy.com.cn。
徐晓颖(1986—),博士,高级工程师,研究方向为煤化工催化剂开发与CO2资源化利用技术开发,E-mail:xiaoying.xu.d@chnenergy.com.cn。
扫 描 看 全 文
邱正璞,邢爱华,张凡等.Cu基甲醇合成催化剂在两种模拟工业合成气中反应的结构变化及稳定性研究[J].低碳化学与化工,2023,48(06):37-42.
QIU Zhengpu,XING Aihua,ZHANG Fan,et al.Study on structure change and stability of Cu-based methanol synthesis catalysts in simulated reaction of two industrial syngas[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):37-42.
邱正璞,邢爱华,张凡等.Cu基甲醇合成催化剂在两种模拟工业合成气中反应的结构变化及稳定性研究[J].低碳化学与化工,2023,48(06):37-42. DOI: 10.12434/j.issn.2097-2547.20220379.
QIU Zhengpu,XING Aihua,ZHANG Fan,et al.Study on structure change and stability of Cu-based methanol synthesis catalysts in simulated reaction of two industrial syngas[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):37-42. DOI: 10.12434/j.issn.2097-2547.20220379.
不同原料转化得到的合成气的CO,2,含量有明显差异,但均能通过传统甲醇催化剂的催化反应来制甲醇。为了研究不同CO,2,含量的合成气对催化剂结构和性能稳定性的影响,采用模拟煤气化和天然气转化制成的合成气,在工业尺寸的列管式夹套反应器上进行了甲醇合成反应,研究了原颗粒工业催化剂在使用前后微观粒子和催化剂性能稳定性的变化。结果表明,5种原颗粒工业催化剂使用前后的Cu和ZnO晶粒尺寸均增大,且在模拟天然气转化制成的合成气条件下,催化剂中Cu和ZnO晶粒尺寸增大速率更快,催化剂整体性能的发挥受到限制,不利于保持催化剂性能的稳定。高CO,2,含量更容易破坏Cu,+,的稳定性,并且导致Zn物种形态的转变。
There are significant differences in the CO,2, content of the synthesis gas obtained from different raw materials, but they can all be converted to methanol through the catalysis of traditional methanol catalysts. In order to study the effect of syngas with different CO,2, content on the structure and performance stability of the catalysts, methanol synthesis was performed in an industrial-sized tubular jacketed reactor using simulated coal gasification and natural gas conversion syngas, and the changes of microparticles and catalyst performance stability of the original particle industrial catalysts before and after use were studied. The results show that the sizes of Cu and ZnO particles increase before and after the use of the five original industrial catalysts, and the sizes of Cu and ZnO particles increase faster under the conditions of synthetic gas produced by natural gas conversion. The overall performance of catalysts is limited, which is not conducive to maintaining the stability of catalyst performance. High CO,2, content is more likely to destroy the stability of Cu,+, and lead to the transformation of Zn species morphology.
甲醇合成Cu基催化剂模拟工业合成气CO2含量稳定性
methanol synthesisCu-based catalystsimulated industrial syngasCO2 contentstability
刘科. 甲醇是储氢最好的载体[J]. 中国石油和化工产业观察, 2021, (12): 31-32.
白秀军. 甲醇汽车的应用技术及发展趋势分析[J]. 汽车实用技术, 2021, 46(13): 19-22
丁鑫, 张栋铭, 焦纬洲, 等. 直接甲醇燃料电池阳极催化剂研究进展[J]. 化工进展, 2021, 40(9): 4918-4930.
LAUDENSCHLEGER D, RULAND H, MUHLER M. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts [J]. Nat Commun, 2020, 11(1): 1-10.
蔡俊修, 陈鸿博, 张鸿斌. 常压附近CO2对Cu/ZnO甲醇合成催化性能的影响[J]. 厦门大学学报(自然科学版), 1990, 29(2): 175-179.
KLIER K, CHATIKAVANIJ V, HERMAN R G, et al. Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide [J]. J Catal, 1982, 74(2): 343-360.
王东升, 谭猗生, 韩怡卓, 等. CO2对浆态床一步法合成二甲醚铜基催化剂稳定性的影响[J]. 催化学报, 2008, 29(1): 63-68.
栾友顺, 徐恒泳, 于春英, 等. CO2对Cu/ZnO/Al2O3甲醇合成催化剂失活的影响[C]//第十三届全国催化学术会议论文集. 兰州: 中国化学会催化委员会, 2006: 715.
FICHTL M B, SCHLERETH D, JACOBSEN N, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts [J]. Appl Catal A, 2015, 502: 262-270.
BALTES C, VUKOJEVIC S, SCHUTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis [J]. J Catal, 2008, 258(2): 334-344.
王琼. 不同制备工艺的铜基合成甲醇催化剂的性能及结构[J]. 工业催化, 2012, 20(11): 39-43.
TOPSOE N Y, TOPSOE H. On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts [J]. Top Catal, 1999, 8(3): 267-270.
陈海波. 热处理对铜基甲醇合成催化剂性能的影响[J]. 能源化工, 2021, 42(4): 1-6.
LIU Y M, LIU J T, LIU S Z, et al. Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111): Comparison with Cu(111) [J]. J CO2 Util, 2017, 20: 59-65.
NAKAMURA J, UCHIJIMA T, KANAI Y, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts [J]. Catal Today, 1996, 28(3): 223-230.
CHOI Y, FUTAGAMI K, FUJITANI T, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model? [J]. Appl Catal A, 2001, 208(1/2): 163-167.
KANAI Y, WATANABLE T, FUJITANI T, et al. Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst [J]. Catal Lett, 1994, 27(1): 67-78.
AMANN P, KLOTZER B, DEGERMAN D, et al. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst [J]. Science, 2022, 376(6593): 603-608.
KULD S, THORHAUGE M, FALSIG H, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis [J]. Science, 2016, 352(6288): 969-974.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构