银川能源学院 化学与生物工程学院,宁夏 银川 750105
王昱官(1983—),硕士,讲师,研究方向为金属材料开发,E-mail:271198784@qq.com。
王 伟(1973—),博士,教授,研究方向为纳米功能材料和清洁能源转化与利用,E-mail:wangwei0928153@163.com。
扫 描 看 全 文
王昱官,王伟.二硒化锡纳米片的制备及其储钠行为研究[J].低碳化学与化工,2023,48(06):76-82.
WANG Yuguan,WANG Wei.Study on preparation of tindiselenide nanosheets and their sodium storage behaviors[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):76-82.
王昱官,王伟.二硒化锡纳米片的制备及其储钠行为研究[J].低碳化学与化工,2023,48(06):76-82. DOI: 10.12434/j.issn.2097-2547.20220365.
WANG Yuguan,WANG Wei.Study on preparation of tindiselenide nanosheets and their sodium storage behaviors[J].Low-carbon Chemistry and Chemical Engineering,2023,48(06):76-82. DOI: 10.12434/j.issn.2097-2547.20220365.
二硒化锡(SnSe,2,)作为典型的过渡金属硫族化合物,在太阳能电池、超级电容器及光伏器件等领域表现出优异的性能。以五水四氯化锡(SnCl,4,·5H,2,O)和二氧化硒(SeO,2,)为原料,采用溶剂热法分别制备了两种SnSe,2,纳米片(SnSe,2,-OAm(油胺为溶剂)和SnSe,2,-OAc(油酸为溶剂)),通过X射线衍射、场发射扫描电子显微镜和显微共焦激光拉曼光谱仪等对SnSe,2,-OAm和SnSe,2,-OAc的结构、形貌进行了表征,并测试了其在钠离子电池中的储钠行为。结果表明,与SnSe,2,-OAc相比,SnSe,2,-OAm具有较薄的纳米片状结构,因而更有利于电子的传输。与基于SnSe,2,-OAc的扣式半电池相比,基于SnSe,2,-OAm的扣式半电池具有更小的电荷转移电阻(约为238 Ω)和更高的初始容量(191 mAh/g),因此SnSe,2,-OAm是具有潜在应用价值的钠离子电池负极材料。
As a typical metal-sulfide compound, tin diselenide (SnSe,2,) exhibits excellent performance in the fields of solar cells, supercapacitors and photovoltaic devices. SnSe,2, nanosheets (SnSe,2,-OAM (oleylamine as solvent) and SnSe,2,-OAC (oleic acid as solvent)) were prepared using stannic chloride pentahydrate (SnCl,4,·5H,2,O) and selenium dioxide (SeO,2,) as raw materials by solvothermic method. The structures and morphologies of SnSe,2,-OAm and SnSe,2,-OAc were characterized by X-ray diffraction, field emission scanning electron microscopy and confocal laser Raman spectrometer, etc, and their sodium storage behaviors in sodium ion batteries were tested. The results show that, compared with SnSe,2,-OAc, SnSe,2,-OAm has a thinner nanosheet structure, which is more conducive to electron transport. Compared with the button half battery based on SnSe,2,-OAc, the button half battery based on SnSe,2,-OAm has a smaller charge transfer resistance (around 238 Ω) and a higher initial capacity (191 mAh/g), which demonstrate SnSe,2,-OAm is a potential negative electrode material for sodium ion batteries.
过渡金属硫族化合物二硒化锡溶剂热法钠离子电池储钠行为
transition metal sulfidetin diselenidesolvothermal methodsodium ion batterysodium storage behaviors
CHU S, CUI Y, LIU N. The path towards sustainable energy [J]. Nat Mater, 2017, 16: 16-22.
DHEPE P, TOMISHIGE K, KEVIN C. Catalytic conversion of biomass [J]. ChemCatChem, 2017, 9(14): 741-746.
TAN H T, FENG Y Z, RUI X H, et al. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries [J]. Small Methods, 2020, 4(1): 654-661.
TRANCOSO R, LARSEN J R, MCVICAR T R, et al. CO2-vegetation feedbacks and other climate changes implicated in reducing baseflow [J]. Geophys Res Lett, 2017, 44(5): 2310-2311.
JIN T, HAN Q, JIAO L. Binder-free electrodes for advanced sodium-ion batteries [J]. Adv Fiber Mater, 2020, 32(3): 251-259.
LARCHER D, LARCHER D, TARASCON J, et al. Towards greener and more sustainable batteries for electrical energy storage [J]. Nat Rev Chem, 2015, 7(1): 19-29.
AZCÁRATE C, MALLOR F, MATEO P. Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource [J]. Renew Energy R, 2017, 102: 445-456.
GONDAL I. A, MASOOD S A, AMJAD M, et al. Review of geothermal energy development efforts in pakistan and way forward [J]. Renew Sust Energ Rev, 2017, 71: 687-696.
DENG D. Li-ion batteries: Basics, progress, and challenges [J]. Energy Sci Eng, 2015, 3(5): 385-389.
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective [J]. J Am Chem Soc, 2013, 135: 1167-1173.
ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries [J]. Energ Environ Sci, 2017, 10(5): 1051-1074.
LIN C, FIORE M, JI E W, et al. Readiness level of sodium-ion battery technology: A materials review [J]. Adv sustain Syst, 2018, 2(3): 1-37.
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries [J]. Chem Rev, 2014, 114(23): 11636-11682.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chem Rev, 2017, 117(9): 6225-6331.
ZHOU J D, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides [J]. Nature, 2018, 556(7701): 355-359.
WANG J W, LIU X H, MAO S X, HUANG J Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction [J]. Nano Lett, 2012, 12(11): 5897-5902.
SU D W, AHN H Y, WANG G X, et al. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance [J]. Chem Commun, 2013, 49(30): 3131-3140.
ZHOU T F, PANG W K, ZHANG C F, et al. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS [J]. ACS Nano, 2014, 8(8): 8323-8333.
KIM Y J, KIM Y G, PARK Y W, et al. SnSe alloy as a promising anode material for Na-ion batteries [J]. Chem Commun, 2015, 51(1): 50-53.
HUANG X, ZENG Z, ZHANG H. Metal dichalcogenide nanosheets: Preparation, properties and applications [J]. Chem Soc Rev, 2013, 42(5): 1934-1946.
CHOI J, JIN J, JUNG I G, et al. SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries [J]. Chem Commun, 2011, 47: 5241-5249.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构