浏览全部资源
扫码关注微信
1.南京大学 化学化工学院 介观化学教育部重点实验室,江苏 南京 210023
2.中石化南京化工研究院有限公司,江苏 南京 210048
Published Online:19 November 2024,
Received:15 August 2024,
Revised:04 September 2024,
移动端阅览
刘洁,孙远龙,李婷婷等.SiO2助剂对铜基催化剂上辛烯醛加氢制辛醇反应副产物选择性的影响[J].低碳化学与化工,
LIU Jie,SUN Yuanlong,LI Tingting,et al.Effects of SiO2 promoters on by-products selectivity in 2-ethyl-2-hexenal hydrogenation to 2-ethylhexanol over Cu-based catalysts[J].Low-carbon Chemistry and Chemical Engineering,
刘洁,孙远龙,李婷婷等.SiO2助剂对铜基催化剂上辛烯醛加氢制辛醇反应副产物选择性的影响[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240338.
LIU Jie,SUN Yuanlong,LI Tingting,et al.Effects of SiO2 promoters on by-products selectivity in 2-ethyl-2-hexenal hydrogenation to 2-ethylhexanol over Cu-based catalysts[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240338.
辛烯醛气相法加氢是工业领域生产2-乙基己醇(下称“辛醇”)的主要方法,该过程的副产物种类和选择性对辛醇品质和产量有直接影响。为获得具有较高催化活性的催化剂并控制副产物选择性,制备了铜(Cu)基催化剂,并采用SiO
2
作为助剂对催化剂进行了改性。评价了所得催化剂(N-1、N-2和N
-3)的辛烯醛气相加氢催化性能,并结合XRD、N
2
吸/脱附、XPS、TEM、NH
3
-TPD和Py-IR等多种表征方式对催化剂进行了表征。结果表明,催化剂的催化活性与催化剂中CuO分散度和Lewis酸量相关。其中在入口温度为150 ℃、反应压力为0.4 MPa、辛烯醛进料液空速为0.3 h
-1
的条件下,SiO
2
含量(质量分数,下同)为0的N-1的辛烯醛转化率为99.76%,辛醇选择性为99.50%,加氢产物中部分加氢副产物2-乙基己醛和2-乙基己烯醇含量分别为0.22%和0.04%,重组分含量为1.06%;SiO
2
能够修饰催化剂表面性质,定向降低重组分产物选择性,SiO
2
含量为2%的N-2的辛烯醛转化率为99.49%,辛醇选择性为99.40%,2-乙基己醛、2-乙基己烯醇和重组分含量分别为0.28%、0.06%和0.72%。在总计10个月的工业应用验证中,N-2表现出较好的催化性能,其2-乙基己醛、辛醇和重组分含量的均值依次为小于0.01%、97.88%和0.42%。
Gas phase hydrogenation of 2-ethyl-2-hexenal is the main method for industrial production of 2-ethylhexanol (hereinafter referred to as “octanol”). The type and selectivity of by-products in the process have direct impacts on the quality and yield of octanol. To achieve a highly active catalyst and control the selectivity of by-products
copper (Cu)-based catalysts were prepared and modified with SiO
2
as the promoter. The catalytic performances of obtained catalysts (N-1
N-2 and N-3) for gas phase hydrogenation of 2-ethyl-2-hexenal were measured and the structures of the catalysts were analyzed by XRD
N
2
adsorption/desorption
XPS
TEM
NH
3
-TPD
Py-IR
etc. The results show that the hydrogenation activities of the catalysts are related to the dispersions of CuO and the amounts of Lewis acid in the catalysts. Under the reaction conditions of inlet temperature of 150 ℃
pressure of 0.4 MPa and 2-ethyl-2-hexenal liquid space velocity of 0.3 h
-1
2-ethyl-2-hexenal conversion rate of 99.76% and octanol selectivity of 99.50% are achieved for N-1 with SiO
2
content (mass fraction
the same below) of 0. The contents of partially hydrogenated by-products 2-ethylhexanal and 2-ethylhexenol in reaction products are 0.22% and 0.04%
respectively
and the content of heavy components is 1.06%. Modification of catalyst surface properties with SiO
2
can regulate the selectivity of heavy component
s. N-2 with SiO
2
content of 2% exhibits 2-ethyl-2-hexenal conversion rate of 99.49% and octanol selectivity of 99.40%
with the content of 2-ethylhexanal
2-ethylhexenol and heavy components of 0.28%
0.06% and 0.72%
respectively. During a total of ten months of industrial application verification
N-2 demonstrate superior catalytic performance with average contents of 2-ethylhexanal
octanol and heavy components of less than 0.01%
97.88% and 0.42%
respectively.
辛烯醛加氢铜基催化剂辛醇SiO2副产物选择性
2-ethyl-2-hexenal hydrogenationCu-based catalyst2-ethylhexanolSiO2by-products selectivity
袁浩然. NCH6-2A型高性能辛烯醛气相加氢制辛醇催化剂制备工艺的研究[J]. 化学工业与工程技术, 2014, 35(1): 21-24.
YUAN H R. Study on preparation process of NCH6-2A high-performance catalyst for gas-phase hydrogenation of octenal to octanol [J]. Energy Chemical Industry, 2014, 35(1): 21-24.
LI Y, LIU X H, AN H L, et al. One-pot sequential aldol condensation and hydrogenation of n-butyraldehyde to 2-ethylhexanol [J]. Industrial & Engineering Chemistry Research, 2016, 55(22): 6293-6299.
张全国, 张志华, 张文成, 等. VAH型气相醛加氢催化剂的工艺研究[J]. 化学工程师, 2003, 98(5): 10-12.
ZHANG Q G, ZHANG Z H, ZHANG W C, et al. Study on process of VAH-type aldehyde hydrogenation catalyst by gas-phase method [J]. Chemical Engineer, 2003, 98(5): 10-12.
吴宽亮, 孙中华, 殷玉圣, 等. NCH6-2型辛烯醛气相加氢催化剂工业试验[J]. 齐鲁石油化工, 2012, 40(3): 201-204.
WU K L, SUN Z H, YIN Y S, et al. Industrial application tast of NCH6-2 catalyst using for gas hydrogenation of octane aldehyde [J]. Qilu Petrochemical Technology, 2012, 40(3): 201-204.
高常春, 殷玉圣, 韩乐, 等. NCH6-2A型辛烯醛气相加氢催化剂工业化应用[J]. 能源化工, 2015, 36(5): 40-43.
GAO C C, YIN Y S, HAN L, et al. Industrial application of NCH6-2A type catalyst for producing 2-ethylhexanol by gas phase hydrogenation [J]. Energy Chemical Industry, 2015, 36(5): 40-43.
郭凤琴. 降低辛醇硫酸色度的方法[J]. 石油化工, 1997, 3: 40-46.
GUO F Q. Methods to decrease the sulfuric acid color of octanol [J]. Petrochemical Technology, 1997, 3: 40-46.
展鹏. 对辛醇硫酸色度影响因素的探讨[J]. 天津化工, 2018, 32(6): 38-40.
ZHAN P. An exploration of factors influencing the sulfuric acid color of octanol [J]. Tianjin Chemical Industry, 2018, 32(6): 38-40.
祝东红. 辛烯醛气相加氢制辛醇催化剂及其工艺的研究[J]. 化学工业与工程技术, 2011, 32(2): 27-30.
ZHU D H. Research on catalyst and its technology for preparing octanol by gas hydrogenation of 2-ethylhexenal [J]. Energy Chemical Industry, 2011, 32(2): 27-30.
LIU G, LIU S, LIU S, et al. Hydrogenation of 2-ethylhexenal using supported-metal catalysts for production of 2-ethylhexanol [J]. Catalysis Letters, 2017, 147(4): 987-995.
GUNAWAN M L, MAKERTIHARTHA I G B N, KURNIAWAN I W, et al. Hydrogenation of 2-ethyl-2-hexenal to alcohol over nickel-based catalysts: Effects of nickel content and promoter [J]. Results in Chemistry, 2023, 6, 101077.
赵丽丽, 王毅, 安华良, 等. 酸碱性对负载型Ni基催化剂催化辛烯醛液相加氢反应性能的影响[J]. 高校化学工程学报, 2017, 31(6): 1333-1339.
ZHAO L L, WANG Y, AN H L, et al. Effects of acid-base properties on catalytic performance of supported nickel-based catalysts for 2-ethyl-2-hexenal hydrogenation [J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(6): 1333-1339.
LIANG N, ZHANG X L, AN H L, et al. Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation-hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst [J]. Green Chemistry, 2015, 17(5): 2959-2972.
ZHAO L L, WANG Y, AN H L, et al. Ni/γ-Al2O3 catalyzed hydrogenation sequence of conjugated double bonds in 2-ethyl-2-hexenal and reaction kinetics [J]. Journal of Chemical Technology and Biothchnology, 2018, 93(6): 1669-1676.
KONG X P, CHEN Z, WU Y H, et al. Synthesis of Cu-Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol: Enhanced catalytic behavior in the presence of a Mg2+ dopant [J]. RSC Advances, 2017, 7(78): 49548-49561.
HUANG X M, MA M, MIAO S, et al. Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: Reaction mechanism and structural evolution [J]. Applied Catalysis A-General, 2017, 531: 79-88.
CHENG Z Z, ZHOU W Q, LAN G J, et al. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy [J]. Journal of Energy Chemistry, 2021, 63: 550-557.
GUTIERREZ V, DENNEHY M, DIEZ A, et al. Liquid phase hydrogenation of crotonaldehyde over copper incorporated in MCM-48 [J]. Applied Catalysis A—General, 2012, 437: 72-78.
MIAO S, AN H L, ZHAO X Q, et al. Catalytic performance of Cu-Mg-Al in the one-step synthesis of 2-ethylhexanol from n-butyraldehyde [J]. Reaction Kinetics Mechanisms and Catalysis, 2018, 125(2): 773-788.
FANG X D, PENG S C, XIE M G, et al. Cooperative external acidity and surface barriers of HZSM-5 in the coupling reaction of CH3Cl and CO to aromatics [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2275-2282.
MERTENS P G N, WAHLEN J, YE X P, et al. Chemoselective C==O hydrogenation of α,β-unsaturated carbonyl compounds over quasihomogeneous and heterogeneous nano-Au0 catalysts promoted by lewis acidity [J]. Catalysis Letters, 2007, 118(1/2): 15-21.
LI W, FAN G L, YANG L, et al. Surface Lewis acid-promoted copper-based nanocatalysts for highly efficient and chemoselective hydrogenation of citral to unsaturated allylic alcohols [J]. Catalysis Science & Technology, 2016, 6(7): 2337-2348.
PRIMO A, CONCEPCION P, CORMA A. Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2 [J]. Chemical Communications, 2011, 47(12): 3613-3615.
HU Q, FAN G L, YANG L, et al. Aluminum-doped zirconia-supported copper nanocatalysts: Surface synergistic catalytic effects in the gas-phase hydrogenation of esters [J]. ChemCatChem, 2014, 6(12): 3501-3510.
WANGT J, XINY, CHENB F, et al. Selective hydrodeoxygenation of alpha, beta-unsaturated carbonyl compounds to alkenes [J]. Nature Communications, 2024, 15(1): 2166.
MOROMI S K, SIDDIKI S M A H, ALI M A, et al. Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts [J]. Catalysis Science & Technology, 2014, 4(10): 3631-3635.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution