浏览全部资源
扫码关注微信
1.浙江省石油股份有限公司,浙江 杭州 310050
2.江西省天然气集团有限公司,江西 南昌 330096
3.浙江省特种设备科学研究院,浙江 杭州 310020
4.江西省天然气管道有限公司,江西 南昌 330096
Published:25 September 2024,
Received:11 July 2024,
Revised:04 August 2024,
移动端阅览
李光让,马倩倩,魏瑾等.基于LNG接收站的氢气液化流程设计与优化[J].低碳化学与化工,2024,49(09):113-122.
LI Guangrang,MA Qianqian,WEI Jin,et al.Design and optimization of hydrogen liquefaction process based on LNG terminals[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):113-122.
李光让,马倩倩,魏瑾等.基于LNG接收站的氢气液化流程设计与优化[J].低碳化学与化工,2024,49(09):113-122. DOI: 10.12434/j.issn.2097-2547.20240293.
LI Guangrang,MA Qianqian,WEI Jin,et al.Design and optimization of hydrogen liquefaction process based on LNG terminals[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):113-122. DOI: 10.12434/j.issn.2097-2547.20240293.
针对氢气液化存在的高能耗、低效率问题,提出了基于液化天然气(LNG)接收站的氢气液化流程。该流程利用LNG冷能预冷、混合制冷剂制冷,将25 ℃、2.1 MPa和仲氢浓度(物质的量分数,下同)25.00%的氢气转化为-252.4 ℃、130 kPa和仲氢浓度98.01%的液氢,50 t/d处理量可供5 × 10
4
~10 × 10
4
辆氢能源汽车使用。该流程在保证天然气入网压力不变的条件下,通过天然气压力能膨胀做功,降低了氢气液化能耗。采用Aspen HYSYS软件对该流程进行了模拟,以比能耗最低为目标函数,结合MATL
AB软件,对流程关键参数进行了优化;以㶲效率、品质因数和制冷性能系数作为评价指标,对系统进行了能量分析。结果表明,优化后流程的比能耗(5.257 kW·h/kg)降低了28.09%,相比欧洲IDEALHY项目降低了17.86%,低于文献报道的同类型流程;㶲效率、品质因数和制冷性能系数分别为45.73%、0.4573和0.2346,相较优化前分别提高了39.04%、39.04%和39.06%,其中㶲效率高于多数文献报道的同类型流程;氢气液化压力低,对设备制造和安全运行更为友好。本流程较为合理、性能较高,可为LNG接收站开展氢气液化提供参考。
To address the high energy consumption and low efficiency of hydrogen liquefaction
a novel hydrogen liquefaction process based on liquefied natural gas (LNG) terminals is proposed. The process utilizes LNG cold energy for precooling and mixed refrigerants for cooling
converting hydrogen at 25 ℃
2.1 MPa with parahydrogen concentration (mole fraction
the same below) of 25.00% into liquid hydrogen at -252.4 ℃
130 kPa with parahydrogen concentration of 98.01%. The process
with a handling capacity of 50 t/d
can support 5 × 10
4
to 10 × 10
4
hydrogen-powered vehicles. By leveraging the pressure energy of natural gas expansion while maintaining the gas grid entry pressure
the energy consumption of hydrogen liquefaction is reduced. The process was simulated using Aspen HYSYS software. With minimized specific energy consumption as the objective function
MATLAB software was used to optimize key process parameters. Exergy efficiency
figure of merit and coefficient of performance were used as evaluation indicators for energy analysis of the system. The results show that the optimized process reduces specific energy consumption (5.257 kW·h/kg) by 28.09%
which is 17.86% lower than the European IDEALHY project and below the levels reported for similar processes in the literature. The exergy efficiency
figure of merit and coefficient of performance are 45.73%
0.4573
and 0.2346
respectively
which increase by 39.04% 39.04% and 39.06% compared to before optimization. The exergy efficiency is higher than that reported for most similar processes in the literature. The lower liquefaction pressure of hydrogen is more favorable for equipment manufacturing and s
afe operation. The process is reasonable and highly efficient
which can provide a reference for hydrogen liquefaction at LNG terminals.
LNG冷能压力能氢气液化流程优化
LNG cold energypressure energyhydrogen liquefactionprocess optimization
国家发改委. 国家发改委发布《氢能产业发展中长期规划(2021-2035年)》[J]. 稀土信息, 2022, (4): 26-32.
NDRC. The National Development and Reform Commission issued the “medium and long-term plan for the development of hydrogen energy industry (2021-2035)” [J]. Rare Earth Information, 2022, (4): 26-32.
MAZLOOMI K, GOMES C. Hydrogen as an energy carrier: Prospects and challenges [J]. Renewable and Sustainable Energy Reviews, 2012, 16: 3024-3033.
邵艳波, 宋义伟, 张志贵, 等. 氢气低温液化与储运技术进展[J]. 低温与超导, 2023, 51(6): 55-61.
SHAO Y B, SONG Y W, ZHANG Z G, et al. Research progress on liquefaction storage and transportation technologies of hydrogen [J]. Cryogenics & Superconductivity, 2023, 51(6): 55-61.
曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669.
CAO X W, YANG J, BIAN J, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669.
GHORBANI B, ZENDEHBOUDI S, SAADY N M, et al. Strategies to improve the performance of hydrogen storage systems by liquefaction methods: A comprehensive review [J]. ACS Omega, 2023, 8(21): 18358-18399.
武艺, 李然, 张丹迪. 中国LNG接收站发展趋势及利用效率提升思考[J]. 油气储运, 2024, 43(7): 721-729.
WU Y, LI R, ZHANG D D. Thinking on the development trend and utilization efficiency improvement of LNG terminal in China [J]. Oil & Gas Storage and Transportation, 2024, 43(7): 721-729.
隋朝霞. 碳中和目标下我国LNG产业链发展对氢能产业发展的启示[J]. 天然气化工—C1化学与化工, 2021, 46(4): 10-13.
SUI Z X. Enlightenment of China’s LNG industry chain development on hydrogen energy industry development under carbon neutrality target [J]. Natural Gas Chemical Industry, 2021, 46(4): 10-13.
王江涛, 杨璐. 氢能产业与LNG接收站联合发展技术分析[J]. 现代化工, 2019, 39(11): 5-11.
WANG J T, YANG L. Technical analysis on joint development of hydrogen industry and LNG terminal [J]. Modern Chemical Industry, 2019, 39(11): 5-11.
孙恒, 徐嘉明, 王超, 等. LNG预冷的新型氢液化工艺设计与优化[J]. 低碳化学与化工, 2023, 48(6): 134-149.
SUN H, XU J M, WANG C, et al. Design and optimization of novel hydrogen liquefaction process with LNG pre-cooling [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 134-149.
沈杨旭. 基于LNG接收站的制氢储氢优化研究[D]. 重庆: 重庆大学, 2022.
SHEN Y X. Optimization of hydrogen production and storage based on LNG terminal [D]. Chongqing: Chongqing University, 2022.
BI Y J, JU Y L. Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization [J]. Energy, 2022, 252: 124047.
王超, 孙恒, 李兆慈, 等. LNG冷能发电制氢及液化的综合能源系统研究[J]. 石油与天然气化工, 2022, 51(2): 46-52.
WANG C, SUN H, LI Z C, et al. Research on integrated energy system for hydrogen production and liquefaction from LNG cold energy generation [J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 46-52.
魏瑾. 基于LNG接收站冷能的发电制氢及氢液化耦合工艺研究[D]. 北京: 中国石油大学(北京), 2022.
WEI J. Research on coupling process of hydrogen generation and hydrogen liquefaction based on cold energy of LNG terminal [D]. Beijing: China University of Petroleum, 2022.
KUENDIGA A, LOEHLEINA K, KRAMERB G J, et al. Large scale hydrogen liquefaction in combination with LNG re-gasification [C]//Proceedings of 16th World Hydrogen Energy Conference. Lyon, 2006: 3326-3333.
CHANG H M, KIM B H, CHOI B. Hydrogen liquefaction process with brayton refrigeration cycle to utilize the cold energy of LNG [J]. Cryogenics, 2020, 108: 103093.
RIAZ A, QYYUM M A, MIN S, et al. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives [J]. Applied Energy, 2021, 301: 117471.
LEE D, GBADAGO D Q, JO Y, et al. Integrating hydrogen liquefaction with steam methane reforming and CO2 liquefaction processes using techno-economic perspectives [J]. Energy Conversion and Management, 2021, 245: 114620.
闫玮祎, 秦锋, 陈锐莹, 等. 低温有机朗肯循环冷能发电在LNG接收站的应用[J]. 煤气与热力, 2019, 39(6): 20-24.
YAN W Y, QIN F, CHEN R Y, et al. Application of low-temperature organic Rankine cycle cold energy power generation in LNG terminal [J]. Gas & Heat, 2019, 39(6): 20-24.
陈煜, 巨永林. 利用液化天然气冷能的朗肯循环与联合法发电系统流程的工艺模拟与对比分析[J]. 化工学报, 2015, 66(S2): 387-391.
CHEN Y, JU Y L. Comparative analysis and simulation of power cycle to recovery cold energy of LNG [J]. CIESC Journal, 2015, 66(S2): 387-391.
QUACK H, ESSLER J, HABERSTROH C, et al. Search for the best processes to liquefy hydrogen in very large plants [C]//Proceedings of 12th Cryogenics 2012-IIR Conference. Dresden, 2012: 081.
QUACK H. Conceptual design of a high efficiency large capacity hydrogen liquefier [C]//Proceedings of the Cryogenic Engineering Conference. New York: AIP Publishing, 2002: 255-263.
ASADNIA M, MEHRPOOYA M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems [J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585.
SON H, YU T, HWANG J, et al. Simulation methodology for hydrogen liquefaction process design considering hydrogen characteristics [J]. International Journal of Hydrogen Energy, 2022, 47(61): 25662-25678.
RIAZ A, QYYUM M A, HUSSAIN A, et al. Significance of ortho-para hydrogen conversion in the performance of hydrogen liquefaction process [J]. International Association for Hydrogen Energy, 2023, 48(68): 26568-26582.
张杰, 罗雪鹏. 液氢制-储-运-加关键技术发展现状及展望[J/OL]. 发电技术: 1-12[2024-07-05]. http://kns.cnki.net/kcms/detail/33.1405.TK.20240521.1517.003.htmlhttp://kns.cnki.net/kcms/detail/33.1405.TK.20240521.1517.003.html.
ZHANG J, LUO X P. Development status and prospect of key technologies for liquid hydrogen production-storage-transportation-refueling [J/OL]. Power Generation Technology: 1-12[2024-07-05]. http://kns.cnki.net/kcms/detail/33.1405.TK.20240521.1517.003.htmlhttp://kns.cnki.net/kcms/detail/33.1405.TK.20240521.1517.003.html.
吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18.
LV C, WANG J W, ZHU W P, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology [J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18.
NAQUASH A, QYYUM M A, MIN S, et al. Carbon-dioxide-precooled hydrogen liquefaction process: An innovative approach for performance enhancement-energy, exergy and economic perspectives [J]. Energy Conversion and Management, 2022, 251: 114947.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution