浏览全部资源
扫码关注微信
太原理工大学 化学与化工学院 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
Published:25 August 2024,
Received:23 May 2024,
Revised:18 June 2024,
移动端阅览
王淑媛,赵东民,尹玲玲等.CuZnAl-LDHs结构调控及其催化合成气制低碳醇研究[J].低碳化学与化工,2024,49(08):1-9.
WANG Shuyuan,ZHAO Dongmin,YIN Lingling,et al.Study on structure regulation of CuZnAl-LDHs and their catalytic synthesis of low-carbon alcohols from syngas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):1-9.
王淑媛,赵东民,尹玲玲等.CuZnAl-LDHs结构调控及其催化合成气制低碳醇研究[J].低碳化学与化工,2024,49(08):1-9. DOI: 10.12434/j.issn.2097-2547.20240226.
WANG Shuyuan,ZHAO Dongmin,YIN Lingling,et al.Study on structure regulation of CuZnAl-LDHs and their catalytic synthesis of low-carbon alcohols from syngas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):1-9. DOI: 10.12434/j.issn.2097-2547.20240226.
为解决Cu基催化剂在合成气制取低碳醇过程中的Cu物种分散度较低等问题,分别采用4种插层方法(共沉淀法、离子交换法、焙烧复原法和返混沉淀法)对[Cu(EDTA)
]
2-
插层ZnAl类水滑石催化剂的结构进行了调控。通过XRD、N
2
物理吸/脱附、TEM、H
2
-TPR和XPS等表征方法对催化剂结构进行了分析,并考察了催化剂催化CO加氢制取低碳醇的性能。结果表明,改变插层方法可以有效调控催化剂的Cu分散度、Cu比表面积和氧空位相对含量等,进而影响其催化性能。采用焙烧复原法制备的催化剂Cu分散度最高,Cu比表面积最大,氧空位相对含量最多,且Cu物种与层板上的ZnO相互作用较强,其在反应条件为温度280 ℃、压力4.0 MPa、反应空速2000 h
-1
和
V
(H
2
):
V
(CO) = 1:1时表现出最优的催化性能,总醇时空收率高达17468.7 mg/(g·h)。
To address the issue of low dispersion of Cu species in Cu-based catalysts used in the synthesis of low-carbon alcohols from sy
ngas
the structures of [Cu(EDTA)
]
2-
intercalated ZnAl hydrotalcite-like catalysts were successfully adjusted by four intercalation methods
including coprecipitation
ion exchange
calcination recovery
and reprecipitation methods. The catalyst structures were characterized by XRD
N
2
physical adsorption/desorption
TEM
H
2
-TPR
XPS and so on
and the catalytic performances of catalysts in CO hydrogenation to low-carbon alcohols were also investigated. The results show that the Cu dispersities
Cu specific surface areas and the relative contents of oxygen vacancy are regulated by the intercalation methods
thereby affecting their catalytic performances. The catalyst prepared by calcination recovery method exhibites the highest Cu dispersity
the largest Cu specific surface area and the highest oxygen vacancy concentration. Moreover
the interaction between Cu species and ZnO on the layered is strong. This catalyst exhibites the best catalytic performance under reaction conditions of temperature 280 ℃
pressure 4.0 MPa
gas hourly space velocity 2000 h
-1
and
V
(H
2
):
V
(CO) = 1:1
and the total alcohol space-time yield achieves 17468.7 mg/(g·h).
[Cu(EDTA)]2-类水滑石分散度合成气低碳醇
[Cu(EDTA)]2-hydrotalcite-like compoundsdispersitysyngaslow-carbon alcohols
王梦星, 栾春晖, 黄伟. 沉淀pH值对CuCoAl-LDHs催化剂催化合成气合成低碳醇性能的影响[J].天然气化工—C1化学与化工, 2020, 45(6): 36-41.
WANG M X, LUAN C H, HUANG W. Effect of precipitation pH value on performance of CuCoAl-LDHs catalyst for higher alcohols synthesis from syngas [J]. Natural Gas Chemical Industry, 2020, 45(6): 36-41.
LUAN X B, REN Z T, DAI X P, et al. Selective conversion of syngas into higher alcohols via a reaction-coupling strategy on multifunctional relay catalysts [J]. ACS Catalysis, 2020, 10(4): 2419-2430.
XUE X X, WENG Y J, YANG S C, et al. Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas [J]. RSC Advances, 2021, 11(11): 6163-6172.
PENG J Y, ZHANG Q, ZHOU Y, et al. Cold plasma-activated Cu-Co catalysts with CN vacancies for enhancing CO2 electroreduction to low-carbon alcohol [J]. Journal of Energy Chemistry, 2023, 85: 108-115.
SI Z Y, AMOO C, HAN Y, et al. Sputtering FeCu nanoalloys as active sites for alkane formation in CO2 hydrogenation [J]. Journal of Energy Chemistry, 2022, 70: 162-173.
WU F P, ZHAO Y P, FU Z P, et al. Catalytic transfer hydrogenolysis mechanism of benzyl phenyl ether over NiCu/Al2O3 using isopropanol as hydrogen source [J]. Fuel Processing Technology, 2023, 250: 107874.
LI H B, JIANG Y L, LI X Y, et al. C2+ Selectivity for CO2 electroreduction on oxidized Cu-based catalysts [J]. Journal of the American Chemical Society, 2023, 145(26): 14335-14344.
WANG S, LIU J, GONG J, et al. CuZnAl@S-1 catalyst for the synthesis of higher alcohols by CO hydrogenation [J]. The Journal of Physical Chemistry C, 2023, 127(23): 11046-11057.
YE J W, SONG S, CUI Z H, et al. Facile synthesis of efficient and robust Cu-Zn-Al catalysts by the sol-gel method for the water-gas shift reaction [J]. Industrial & Engineering Chemistry Research, 2023, 62(38): 15386-15394.
DENG J L, GU C D, XU H R, et al. MgCr2O4-modified CuO/Cu2O for high-temperature thermochemical energy storage with high redox activity and sintering resistance [J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43151-43162.
LIM A, YEO J W, ZENG H C. Preparation of CuZn-doped MgAl-layered double hydroxide catalysts through the memory effect of hydrotalcite for effective hydrogenation of CO2 to methanol [J]. ACS Applied Energy Materials, 2023, 6(2): 782-794.
WEI Y N, YOU K Y, XU W C, et al. Highly efficient reductive amination of ethanol to ethylamines over non-noble metallic NiCu/MgAlO catalyst [J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 4947-4954.
STANGELAND K, CHAMSSINE F, FU W Z, et al. CO2 hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium [J]. Journal of CO2 Utilization, 2021, 50: 101609.
NEETHU P P, VENKATACHALAM G, VENKATESHA N J, et al. Cobalt-based hydrotalcite: A potential non-noble metal-based heterogeneous catalyst for selective hydrogenation of aromatic aldehydes [J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 4976-4986.
CHEBOUT R, TICHIT D, LAYRAC G, et al. New basic catalysts obtained from layered double hydroxides nanocomposites [J]. Solid State Sciences, 2010, 12(6): 1013-1017.
孔令奇, NARKHEDE NILESH, 刘瑞琴, 等. 插层结构水滑石前驱体制备Cu/ZnO/Al2O3催化剂及其甲醇合成催化性能[J]. 燃料化学学报, 2021, 49(4): 513-521.
KONG L Q, NARKHEDE N, LIU R Q, et al. Preparation of Cu/ZnO/Al2O3 catalyst by intercalated hydrotalcite precursor and its catalytic performance in methanol synthesis [J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 513-521.
WANG S Y, HONG Z, YIN L L, et al. Impact of Cu complex anions on CuZnAl intercalated hydrotalcite-like catalysts for low-carbon alcohols synthesis from syngas [J]. Applied Catalysis A: General, 2024, 682: 119822.
SUN T T, FAN G L, LI F. Dispersion-enhanced supported Pd catalysts for efficient growth of carbon nanotubes through chemical vapor deposition [J]. Industrial & Engineering Chemistry Research, 2013, 56(16): 5538-5547.
BARRABES N, FRARE A, FOTTINGER K, et al. Pt-Cu bimetallic catalysts obtained from layered double hydroxides by an anion-exchange route [J]. Applied Clay Science, 2012, 69: 1-10.
COSTA F R, LEUTERITZ A, WAGENKNECHT U, et al. Intercalation of Mg-Al layered double hydroxide by anionic surfactants: Preparation and characterization [J]. Applied Clay Science, 2008, 38(3/4): 153-164.
彭霞辉, 黄可龙, 焦飞鹏, 等. 手性阴离子柱撑水滑石的制备和表征[J]. 功能材料, 2005, 36(12): 1947-1950.
PENG X H, HUANG K L, JIAO F P, et al. The synthesis and characterizing of chrial anion pillared layered double hydroxides [J]. Journal of Functional Materials, 2005, 36(12): 1947-1950.
KAMEDA T, TAKEUCHI H, YOSHIAKI T. Hybrid inorganic/organic composites of Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate prepared by co-precipitation [J]. Materials Research Bulletin, 2009, 44(4): 840-845.
WU G Q, WANG L Y, YANG L, et al. Factors affecting the interlayer arrangement of transition metal-ethylenediaminetetraacetate complexes intercalated in Mg/Al layered double hydroxides [J]. European Journal of Inorganic Chemistry, 2007, 6: 799-808.
GAO W, ZHAO Y F, LIU J, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides [J]. Catalysis Science & Technology, 2013, 3(5): 1324-1332.
FANG X, MEN Y H, WU F, et al. Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH) [J]. Journal of CO2 Utilization, 2019, 29: 57-64.
TIAN M, TIAN X, MA E J, et al. Investigation of the role of oxygen vacancies in CuZn catalysts for the formation of higher alcohols from syngas [J]. Fuel, 2024, 360: 130595.
BUKHTIYAROVA M. A review on effect of synthesis conditions on the formation of layered double hydroxides [J]. Journal of Solid State Chemistry, 2019, 269: 494-506.
KWAK B K, PARK D S, YUN Y S, et al. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol [J]. Catalysis Communications, 2012, 24: 90-95.
GUO S X, LIU G L, ZHANG Y, et al. Oxygen vacancies boosted Co-Co2C catalysts for higher alcohols synthesis from syngas [J]. Applied Surface Science, 2022, 576: 151846.
LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3 [J]. The Journal of Physical Chemistry C, 2010, 114(40): 16929-16936.
TIAN M, TIAN X, MA E J, et al. Oxygen vacancy control of catalytic activity of Cu/ZnO for higher alcohols synthesis via incorporating Ga [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(37): 13616-13627.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution