浏览全部资源
扫码关注微信
1.浙江浙能科技环保集团股份有限公司,浙江 杭州 310012
2.浙江工业大学 化学工程学院 催化反应工程研究所,浙江 杭州 310014
Published:25 July 2024,
Received:27 April 2024,
Revised:27 May 2024,
扫 描 看 全 文
张威,张瑞娜,葛春亮等.功能化离子液体活性位点强化CO2捕集[J].低碳化学与化工,2024,49(07):23-33.
ZHANG Wei,ZHANG Ruina,GE Chunliang,et al.Intensification of CO2 capture by active sites in functional ionic liquids[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):23-33.
张威,张瑞娜,葛春亮等.功能化离子液体活性位点强化CO2捕集[J].低碳化学与化工,2024,49(07):23-33. DOI: 10.12434/j.issn.2097-2547.20240183.
ZHANG Wei,ZHANG Ruina,GE Chunliang,et al.Intensification of CO2 capture by active sites in functional ionic liquids[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):23-33. DOI: 10.12434/j.issn.2097-2547.20240183.
碳捕集、利用与封存(CCUS)技术已经成为我国碳中和技术体系的重要组成部分。与工业领域常用的有机胺吸收剂相比,具有低挥发性、高稳定性和位点可设计等优点的功能化离子液体在化学吸收法捕集CO
2
方面表现出独特的优势。综述了近年来功能化离子液体在CO
2
捕集领域的研究进展,简述了功能化离子液体的结构分类和合成策略,详细阐述了功能化离子液体与CO
2
发生化学反应的3类活性位点(氮位点、氧位点和碳位点)及相应捕集机理,并对将来功能化离子液体CO
2
捕集技术的研究方向进行了展望。
Carbon capture
utilization and storage (CCUS) technology has become an important part of China’s carbon neutral technologies. Compared with the organic amine absorbers conventionally used in the industrial field
functional ionic liquids with low volatility
high stability and site designability show unique advantages in CO
2
capture by chemical absorptions. The research progress of functional ionic liquids for CO
2
capture in recent years was reviewed. The structural classification and synthesis strategies of functional ionic liquids were briefly described. Three types of active sites (nitrogen site
oxygen site and carbon site) of functional ionic liquids and the corresponding capture mechanisms were described in detail. And the future research directions of CO
2
capture by functional ionic liquids were prospected.
功能化离子液体CO2捕集活性位点
functional ionic liquidsCO2 captureactive sites
World Meteorological Organization. State of the global climate 2022 (WMO-No.1316) [R]. Geneva: World Meteorological Organization, 2023.
张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023) [R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
ZHANG X, YANG X L, LU X, et al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2023) [R]. Beijing: The Administrative Center for China’s Agenda 21, The Global CCS Institute, Tsinghua University, 2023.
ZHANG S H, SHEN Y, ZHENG C H, et al. Recent advances, challenges, and perspectives on carbon capture [J]. Frontiers of Environmental Science & Engineering, 2024, 18(6): 75.
陈久弘, 王毅, 王恺华, 等. 二氧化碳捕集用吸附分离技术及其吸附材料研究进展[J]. 低碳化学与化工, 2023, 48(5): 62-70.
CHEN J H, WANG Y, WANG K H, et al. Research progress on adsorption and separation technologies and adsorption materials for carbon dioxide capture [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 62-70.
张嘉伟, 顾文波, 张富龙. 基于化学吸收法的二氧化碳捕集技术研究进展[J]. 低碳化学与化工, 2023, 48(4): 96-106.
ZHANG J W, GU W B, ZHANG F L. Research progress of carbon dioxide capture technology based on chemical absorption method [J]. Low-Carbon Chemistry and Chemical Engineering, 2023,48(4):96-106.
闫瀚钊, 王艳丽, 李进锋. 膜分离法捕集烟气中二氧化碳的研究进展[J/OL]. 低碳化学与化工: 1-10[2024-04-27]. DOI: 10.12434/j.issn.2097-2547.20240045http://dx.doi.org/10.12434/j.issn.2097-2547.20240045.
YAN H Z, WANG Y L, LI J F. Research progress of carbon dioxide capture in flue gas by membrane separation method [J/OL]. Low-Carbon Chemistry and Chemical Engineering: 1-10[2024-04-27]. DOI: 10.12434/j.issn.2097-2547.20240045http://dx.doi.org/10.12434/j.issn.2097-2547.20240045.
李亚清, 宋沆, 张玉涛, 等. 醇胺法吸收烟道气中二氧化碳的研究进展[J/OL]. 低碳化学与化工: 1-11[2024-04-27]. DOI: 10.12434/j.issn.2097-2547.20230352http://dx.doi.org/10.12434/j.issn.2097-2547.20230352.
LI Y Q, SONG H, ZHANG Y T, et al. Research progress on absorption of carbon dioxide in flue gas by alcohol amine method [J/OL]. Low-Carbon Chemistry and Chemical Engineering: 1-11[2024-04-27]. DOI: 10.12434/j.issn.2097-2547.20230352http://dx.doi.org/10.12434/j.issn.2097-2547.20230352.
HOLBREY J D, SEDDON K R. Ionic liquids [J]. Clean Products and Processes, 1999, 1(4): 223-236.
BLANCHARD L A, HANCU D, BECKMAN E J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29.
BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society, 2002, 124(6): 926-927.
ZHANG J M, ZHANG S J, DONG K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids [J]. Chemistry-A European Journal, 2006, 12(15): 4021-4026.
YOON B, CHEN S, VOTH G A. On the key influence of amino acid ionic liquid anions on CO2 capture [J]. Journal of the American Chemical Society, 2024, 146(2): 1612-1618.
WANG C M, LUO X Y, LUO H M, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture [J]. Angewandte Chemie International Edition, 2011, 50(21): 4918-4922.
WANG K L, ZHANG Z W, WANG S Y, et al. Dual-tuning azole-based ionic liquids for reversible CO2 capture from ambient air [J]. ChemSusChem, 2024, e202301951.
HUANG Y J, CUI G K, ZHAO Y L, et al. Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids [J]. Angewandte Chemie International Edition, 2017, 56(43): 13293-13297.
DEEPAN K M, JACCOB M. Revealing the non-covalent interactions existing between CO2 and succinimide-based ionic liquid: A DFT exploration [J]. Journal of Molecular Liquids, 2024, 399: 124325.
CHEN T, ZHANG Y, XU Y. Efficient synthesis of quinazoline-2,4(1H,3H)-dione via simultaneous activated CO2 and 2-aminobenzonitrile by 1-methylhydantoin anion-functionalized ionic liquid through the multiple-site cooperative interactions [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(32): 10699-10711.
WANG C M, LUO H M, LI H R, et al. Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion [J]. Chemistry-A European Journal, 2012, 18(7): 2153-2160.
WANG C M, LUO H M, JIANG D D, et al. Carbon dioxide capture by superbase-derived protic ionic liquids [J]. Angewandte Chemie International Edition, 2010, 49(34): 5978-5981.
PAN M G, ZHAO Y S, ZENG X Q, et al. Efficient absorption of CO2 by introduction of intramolecular hydrogen bonding in chiral amino acid ionic liquids [J]. Energy & Fuels, 2018, 32(5): 6130-6135.
CHEN X Y, LUO X Y, LI J R, et al. Cooperative CO2 absorption by amino acid-based ionic liquids with balanced dual sites [J]. RSC Advances, 2020, 10(13): 7751-7757.
SUO X, FU Y Q, DOTHANH C L, et al. CO2 chemisorption behavior in conjugated carbanion-derived ionic liquids via carboxylic acid formation [J]. Journal of the American Chemical Society, 2022, 144(47): 21658-21663.
曾少娟, 孙雪琦, 白银鸽, 等. CO2捕集分离的功能离子液体及材料研究进展[J]. 化学学报, 2023, 81(6): 627-645.
ZENG S J, SUN X Q, BAI Y G, et al. Research progress of CO2 capture and separation by functionalized ionic liquids and materials [J]. Acta Chimica Sinica, 2023, 81(6): 627-645.
XU Y S, ZHANG R N, ZHOU Y, et al. Tuning ionic liquid-based functional deep eutectic solvents and other functional mixtures for CO2 capture [J]. Chemical Engineering Journal, 2023, 463: 142298.
HUSSAIN S N, HUSSIN F, ANJUM A, et al. A review of encapsulated ionic liquids for CO2 capture [J]. Journal of Molecular Liquids, 2023, 374: 121266.
JIANG W F, LI X S, GAO G, et al. Advances in applications of ionic liquids for phase change CO2 capture [J]. Chemical Engineering Journal, 2022, 445: 136767.
REN S H, HOU Y C, TIAN S D, et al. What are functional ionic liquids for the absorption of acidic gases? [J]. The Journal of Physical Chemistry B, 2013, 117(8): 2482-2486.
WANG C M, GUO Y, ZHU X, et al. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination [J]. Chemical Communications, 2012, 48(52): 6526-6528.
DOYLE K A, MURPHY L J, PAULA Z A, et al. Characterization of a new ionic liquid and its use for CO2 capture from ambient air: Studies on solutions of diethylenetriamine (DETA) and [DETAH]NO3 in polyethylene glycol [J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 8829-8841.
HU P C, ZHANG R, LIU Z C, et al. Absorption performance and mechanism of CO2 in aqueous solutions of amine-based ionic liquids [J]. Energy & Fuels, 2015, 29(9): 6019-6024.
SHI G L, ZHAO H Q, CHEN K H, et al. Efficient capture of CO2 from flue gas at high temperature by tunable polyamine-based hybrid ionic liquids [J]. AIChE Journal, 2020, 66(1): e16779.
JIANG Y Y, WANG G N, ZHOU Z, et al. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity [J]. Chemical Communications, 2008, (4): 505-507.
WANG X F, AKHMEDOV N G, DUAN Y H, et al. Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture [J]. Journal of Materials Chemistry A, 2013, 1(9): 2978-2982.
SISTLA Y S, KHANNA A. CO2 absorption studies in amino acid-anion based ionic liquids [J]. Chemical Engineering Journal, 2015, 273: 268-276.
LI X Y, HOU M Q, ZHANG Z F, et al. Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters [J]. Green Chemistry, 2008, 10(8): 879-884.
GURKAN B E, DE LA FUENTE J C, MINDRUP E M, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids [J]. Journal of the American Chemical Society, 2010, 132(7): 2116-2117.
BRENNECKE J F, GURKAN B E. Ionic liquids for CO2 capture and rmission teduction [J]. The Journal of Physical Chemistry Letters, 2010, 1(24): 3459-3464.
SARAVANAMURUGAN S, KUNOV-KRUSE A J, FEHRMANN R, et al. Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2 [J]. ChemSusChem, 2014, 7(3): 897-902.
YANG Q W, WANG Z P, BAO Z B, et al. New insights into CO2 absorption mechanisms with amino-acid ionic liquids [J]. ChemSusChem, 2016, 9(8): 806-812.
NOORANI N, MEHRDAD A. CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies [J]. Fluid Phase Equilibria, 2020, 517: 112591.
NOORANI N, MEHRDAD A. Cholinium-amino acid ionic liquids as biocompatible agents for carbon dioxide absorption [J]. Journal of Molecular Liquids, 2022, 357: 119078.
LUO X Y, LV X Y, SHI G L, et al. Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO2 [J]. AIChE Journal, 2019, 65(1): 230-238.
ZHENG S, ZENG S J, LI Y, et al. State of the art of ionic liquid-modified adsorbents for CO2 capture and separation [J]. AIChE Journal, 2022, 68(2): e17500.
REN H Y, SHEN H Y, LIU Y Z. Adsorption of CO2 with tetraethylammonium glycine ionic liquid modified alumina in the totating adsorption bed [J]. Journal of CO2 Utilization, 2022, 58: 101925.
WEN S Y, WANG T, ZHANG X M, et al. Novel amino acid ionic liquids prepared via one-step lactam hydrolysis for the highly efficient capture of CO2 [J]. AIChE Journal, 2023, 69(11): e18206.
WU H Z, WEN S Y, ZHANG X M, et al. Aqueous solutions of sterically hindered amino acid ionic liquids for rapid and efficient capture of CO2 [J]. Chemical Engineering Journal, 2024, 488: 150771.
GURKAN B, GOODRICH B F, MINDRUP E M, et al. Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture [J]. The Journal of Physical Chemistry Letters, 2010, 1(24): 3494-3499.
CUI G K, ZHAO N, WANG J J, et al. Computer-assisted design of imidazolate-based ionic liquids for improving sulfur dioxide capture, carbon dioxide capture, and sulfur dioxide/carbon dioxide selectivity [J]. Chemistry-An Asian Journal, 2017, 12(21): 2863-2872.
LEI X X, XU Y J, ZHU L L, et al. Highly efficient and reversible CO2 capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid [J]. RSC Advances, 2014, 4(14): 7052-7057.
LI F F, BAI Y G, ZENG S J, et al. Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide [J]. International Journal of Greenhouse Gas Control, 2019, 90: 102801.
ZHU X, SONG M L, XU Y J. DBU-based protic ionic liquids for CO2 capture [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8192-8198.
XU Y J. CO2 absorption behavior of azole-based protic ionic liquids: Influence of the alkalinity and physicochemical properties [J]. Journal of CO2 Utilization, 2017, 19: 1-8.
IZADYAR M, REZAEIAN M, VICTOROV A. Theoretical study on the absorption of carbon dioxide by DBU-based ionic liquids [J]. Physical Chemistry Chemical Physics, 2020, 22 (35): 20050-20060.
HUANG Y J, CUI G K, WANG H Y, et al. Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations [J]. Journal of CO2 Utilization, 2018, 28: 299-305.
FU H, WANG X Y, SANG H N, et al. Highly efficient absorption of carbon dioxide by EG-assisted DBU-based deep eutectic solvents [J]. Journal of CO2 Utilization, 2021, 43: 101372.
FU H, SANG H N, SU L, et al. Bicyclic amidine-based deep eutectic solvents for efficient CO2 capture by multiple sites interaction [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106248.
GAO F, WANG Z, JI P, et al. CO2 Absorption by DBU-based protic ionic liquids: Basicity of anion dictates the absorption capacity and mechanism [J]. Frontiers in Chemistry, 2019, 6: 658.
SUO X, YANG Z Z, FU Y Q, et al. CO2 chemisorption behavior of coordination-derived phenolate sorbents [J]. ChemSusChem, 2021, 14(14): 2854-2859.
ZHANG X M, HUANG K, XIA S, et al. Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2 [J]. Chemical Engineering Journal, 2015, 274: 30-38.
LUO X Y, GUO Y, DING F, et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-dite cooperative interactions [J]. Angewandte Chemie International Edition, 2014, 53(27): 7053-7057.
CUI G, LV M, YANG D Z. Efficient CO2 absorption by azolide-based deep eutectic solvents [J]. Chemical Communications, 2019, 55: 1426-1429.
WANG Z H, WU C Y, WANG Z, et al. CO2 capture by 1,2,3-triazole-based deep eutectic solvents: The unexpected role of hydrogen bonds [J]. Chemical Communications, 2022, 58(53): 7376-7379.
CHENG J Y, WU C Y, GAO W J, et al. CO2 absorption mechanism by the deep eutectic solvents formed by monoethanolamine-based protic ionic liquid and ethylene glycol [J]. International Journal of Molecular Sciences, 2022, 23(3): 1893.
YAN H, ZHAO L, BAI Y G, et al. Superbase ionic liquid-based deep eutectic solvents for improving CO2 absorption [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2523-2530.
HUANG Y J, CUI G K, ZHAO Y L, et al. Reply to the correspondence on “preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids” [J]. Angewandte Chemie International Edition, 2019, 58(2): 386-389.
WANG Z, WANG Z H, HUANG X, et al. Deep eutectic solvents composed of bio-phenol-derived superbase ionic liquids and ethylene glycol for CO2 capture [J]. Chemical Communications, 2022, 58(13): 2160-2163.
ZHANG R, HU D, ZHOU Y, et al. Tuning ionic liquid-based catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones [J]. Molecules, 2023, 28(3): 1024.
HONG S Y, CHEON Y, SHIN S H, et al. Carboxylate-assisted formation of alkylcarbonate species from CO2 and tetramethylammonium salts with a β-amino acid anion [J]. ChemSusChem, 2013, 6(5): 890-897.
WANG C, MAHURIN S M, LUO H, et al. Reversible and robust CO2 capture by equimolar task-specific ionic liquid-superbase mixtures [J]. Green Chemistry, 2010, 12(5): 870-874.
CUI G K, XU Y, HU D, et al. Tuning functional ionic deep eutectic solvents as green sorbents and catalysts for highly efficient capture and transformation of CO2 to quinazoline-2,4(1H,3H)-dione and its derivatives [J]. Chemical Engineering Journal, 2023, 469: 143991.
陈凤凤, 董艳, 桑晓燕, 等. 四丁基季鏻羧酸盐离子液体的物理化学性质与CO2溶解度[J]. 物理化学学报, 2016, 32(3): 605-610.
CHEN F F, DONG Y, SANG X Y, et al. Physicochemical properties and CO2 solubility of tetrabutylphosphonium carboxylate ionic liquids [J]. Acta Physico-Chimica Sinica, 2016, 32(3), 605-610.
CHEN F F, HUANG K, ZHOU Y, et al. Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids [J]. Angewandte Chemie International Edition, 2016, 55(25): 7166-7170.
WU Y Y, ZHAO Y F, LI R P, et al. Tetrabutylphosphonium-based ionic liquid catalyzed CO2 transformation at ambient conditions: A case of synthesis of α-alkylidene cyclic carbonates [J]. ACS Catalysis, 2017, 7(9): 6251-6255.
DING F, HE X, LUO X Y, et al. Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C—HO hydrogen bonding interaction strengthened by the anion [J]. Chemical Communications, 2014, 50(95): 15041-15044.
YANG L H, WANG H M. Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes [J]. ChemSusChem, 2014, 7(4): 962-998.
GURAU G, RODRÍGUEZ H, KELLEY S P, et al. Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids [J]. Angewandte Chemie International Edition, 2011, 50(50): 12024-12026.
SEO S, DESILVA M A, BRENNECKE J F. Physical properties and CO2 reaction pathway of 1-ethyl-3-methylimidazolium ionic liquids with aprotic heterocyclic anions [J]. The Journal of Physical Chemistry B, 2014, 118(51): 14870-14879.
OH S, MORALES-COLLAZO O, BRENNECKE J F. Cation-anion interactions in 1-ethyl-3-methylimidazolium-based ionic liquids with aprotic heterocyclic anions (AHAs) [J]. The Journal of Physical Chemistry B, 2019, 123(39): 8274-8284.
HU J Q, CHEN L T, SHI M Q, et al. A quantum chemistry study for 1-ethyl-3-methylimidazolium ion liquids with aprotic heterocyclic anions applied to carbon dioxide absorption [J]. Fluid Phase Equilibria, 2018, 459: 208-218.
MEI K, HE X, CHEN K H, et al. Highly efficient CO2 capture by imidazolium ionic liquids through a reduction in the formation of the carbene-CO2 complex [J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8066-8072.
LEE Y Y, PENLEY D, KLEMM A, et al. Deep eutectic solvent formed by imidazolium cyanopyrrolide and ethylene glycol for reactive CO2 separations [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1090-1098.
WANG C M, LUO H M, LUO X Y, et al. Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems [J]. Green Chemistry, 2010, 12(11): 2019-2023.
GOHNDRONE T R, BUM LEE T, DESILVA M A, et al. Competing reactions of CO2 with cations and anions in azolide ionic liquids [J]. ChemSusChem, 2014, 7(7): 1970-1975.
LEE T B, OH S, GOHNDRONE T R, et al. CO2 chemistry of phenolate-based ionic liquids [J]. The Journal of Physical Chemistry B, 2016, 120(8): 1509-1517.
OH S, MORALES-COLLAZO O, KELLER A N, et al. Cation-anion and anion-CO2 interactions in triethyl(octyl)phosphonium ionic liquids with aprotic heterocyclic anions (AHAs) [J]. The Journal of Physical Chemistry B, 2020, 124(40): 8877-8887.
GOHNDRONE T R, SONG T, DESILVA M A, et al. Quantification of ylide formation in phosphonium-based ionic liquids reacted with CO2 [J]. The Journal of Physical Chemistry B, 2021, 125(24): 6649-6657.
CHEN M S, XIONG W J, CHEN W D, et al. Synergy of carbanion siting and hydrogen bonding in super-nucleophilic deep eutectic solvents for efficient CO2 capture [J]. AIChE Journal, 2024, 70(4): e18319.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution