浏览全部资源
扫码关注微信
华北理工大学 冶金与能源学院,河北 唐山 063210
Published:25 September 2024,
Received:14 April 2024,
Revised:30 April 2024,
移动端阅览
黄兴,梁家宝,马强等.甲烷水蒸气重整反应速率模拟与机理分析[J].低碳化学与化工,2024,49(09):12-18.
HUANG Xing,LIANG Jiabao,MA Qiang,et al.Reaction rate simulation and mechanism analysis of methane steam reforming[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):12-18.
黄兴,梁家宝,马强等.甲烷水蒸气重整反应速率模拟与机理分析[J].低碳化学与化工,2024,49(09):12-18. DOI: 10.12434/j.issn.2097-2547.20240156.
HUANG Xing,LIANG Jiabao,MA Qiang,et al.Reaction rate simulation and mechanism analysis of methane steam reforming[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):12-18. DOI: 10.12434/j.issn.2097-2547.20240156.
氢能作为清洁能源,具有巨大的发展潜力。甲烷水蒸气重整技术是一种经济且环保的制氢方式,可产出高纯度氢并减少碳排放。但在该反应的链转移过程中,由于反应速率变化较快,目前反应机理尚不明确。采用CHEMKIN模拟软件,将甲烷水蒸气重整反应动力学模型与平推流反应器(PFR)进行耦合,在温度为1200 K、水碳比(物质的量比)为3.0和气体入口质量流量为0.01 g/s的反应条件下进行模拟。通过分析CH
4
、H
2
O及中间产物CH
3
基元反应速率,确定了影响反应的主要物质,进而对反应机理(主要指反应路径)进行了深入分析。结果表明,水蒸气和CH
4
在催化剂表面发生的吸附和解吸附反应以及H
2
O(s)(s代表吸附态)和CH
4
(s)在催化剂表面发生的解离反应对甲烷水蒸气重整反应的影响较大;CH
4
(s)在催化剂表面的两种解离反应分别为直接解离和与O(s)发生反应解离,且与O(s)发生反应的解离速率要高于直接解离速率。CH
4
(s)在催化剂表面的反应路径为CH
4
(g) → CH
4
(s) → CH
3
(s) → CH
2
(s) → CH(s) → C(s),其中CH
4
(g) → CH
4
(s) → CH
3
(s)对反应的影响最大。H
2
O(g)同样吸附在催化剂表面,其反应路径为H
2
O(g) → H
2
O(s) → OH(s) → H(s)。
As clean energy
hydrogen energy has great potential for development. Methane steam reforming is an economical and environmentally friendly hydrogen production method
which can produce high-purity hydrogen and reduce carbon emissions. However
due to the rapid change of the reaction rate during the chain transfer process of the reaction
the reaction mechanism is still unclear. CHEMKIN simulation software was used to couple the methane steam reforming reaction kinetic model with the Plug Flow Reactor (PFR). The simulation was carried out under the reaction conditions of the temperature of 1200 K
water-carbon ratio (molar ratio) of 3.0
and gas inlet mass flow rate of 0.01 g/s. By analyzing the elementary reaction rates of CH
4
H
2
O and intermediate product CH
3
the main substances involved in the reaction were determined
and the reaction mechanism (mainly refers to the reaction pathways) was further analyzed. The results show that the adsorption and desorption reaction of water vapor and methane on the catalyst surface
and the dissociation reaction of H
2
O(s) (s represents adsorbed state) and CH
4
(s) on the catalyst has a great influence on methane steam reforming reaction. The two dissociation reactions of CH
4
(s) on the catalyst surface are direct dissociation and reactive dissociation with O(s)
and the reaction rate with O(s) is higher than the direct dissociation rate. The reaction pathway of CH
4
(s) on the catalyst surface is CH
4
(g) → CH
4
(s) → CH
3
(s) → CH
2
(s) → CH(s) → C(s)
and CH
4
(g) → CH
4
(s) → CH
3
(s) has the greatest influence on the reaction. H
2
O(g) is also adsorbed on the surface of catalysts
and the reaction pathway is H
2
O(g) → H
2
O(s) → OH(s) → H(s).
甲烷水蒸气重整反应速率反应机理
methane steam reformingreaction ratereaction mechanism
LI L, LIN J, WU N Y, et al. Review and outlook on the international renewable energy development [J]. Energy and Built Environment, 2022, 3(2): 139-157.
王东军, 明利鹏, 王桂芝, 等. 国外甲醇制氢催化剂研究进展[J]. 天然气化工—C1化学与化工, 2011, 36(5): 73-76.
WANG D J, MING L P, WANG G Z, et al. Advance in foreign researches on the catalysts for hydrogen production from methanol [J]. Natural Gas Chemical Industry, 2011, 36(5): 73-76.
HUANG X, LV Z G, ZHAO B Y, et al. Optimization of operating parameters for methane steam reforming thermochemical process using Response Surface Methodology [J]. International Journal of Hydrogen Energy, 2022, 47(66): 28313-28321.
黄兴, 赵博宇, BACHIROU GUENE LOUGOU, 等. 甲烷水蒸气重整制氢研究进展[J]. 石油与天然气化工, 2022, 51(1): 53-61.
HUANG X, ZHAO B Y, BACHIROU G L, et al. Research progress of methane steam reforming for hydrogen production [J]. Chemical Engineering of Oil & Gas, 2022, 51(1): 53-61.
DONG X X, LIU Y, CHENG S C, et al. Molten salt induced synthesis of Ni-Sn-Al ternary oxide as highly efficient catalyst for low S/C ratio methane steam reforming [J]. Fuel Processing Technology, 2023, 247: 107800.
陈健, 焦阳, 卜令兵, 等. 炼厂副产氢生产燃料电池用氢气应用研究[J]. 天然气化工—C1化学与化工, 2020, 45(4): 66-70.
CHEN J, JIAO Y, BU L B, et al. Application of refinery by-product hydrogen to produce hydrogen for fuel cell [J]. Natural Gas Chemical Industry, 2020, 45(4): 66-70.
DUAN W J, YU Q B, WU T W, et al. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas [J]. Energy Conversion and Management, 2016, 117: 513-519.
HESENOV A, MERYEMOĞLU B, IÇTEN O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield [J]. International Journal of Hydrogen Energy, 2011, 36(19): 12249-12258.
SONG H C, LIU Y H, BIAN H, et al. Energy, environment, and economic analyses on a novel hydrogen production method by electrified steam methane reforming with renewable energy accommodation [J]. Energy Conversion and Management, 2022, 258: 115513.
RADICA G, TOLJ I, MARKOTA D, et al. Control strategy of a fuel-cell power module for electric forklift [J]. International Journal of Hydrogen Energy, 2021, 46(72): 35938-35948.
LI W M, CHENG C, HE L, et al. Effects of feedstock and pyrolysis temperature of biochar on promoting hydrogen production of ethanol-type fermentation [J]. Science of the Total Environment, 2021, 790: 148206.
杨一超. 超临界水生物质气化制氢的研究进展[J]. 天然气化工—C1化学与化工, 2010, 35(2):65-70.
YANG Y C. Review on biomass gasification in supercritical water for hydrogen production [J]. Natural Gas Chemical Industry, 2010, 35(2): 65-70.
ZHENG Y, CHEN Z W, ZHANG J J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels [J]. Electrochemical Energy Reviews, 2021, 4: 508-517.
CHAKIK F E, KADDAMI M, MIKOU M. Effect of operating parameters on hydrogen production by electrolysis of water [J]. International Journal of Hydrogen Energy, 2017, 42(40): 25550-25557.
徐军科, 任克威, 王晓蕾, 等. 甲烷干重整制氢研究进展[J]. 天然气化工—C1化学与化工, 2008, 33(6): 53-60.
XU J K, REN K W, WANG X L, et al. Progress in studies on dry-reforming of methane to hydrogen [J]. Natural Gas Chemical Industry, 2008, 33(6): 53-60.
莫若飞, 蒋毅, 郑林, 等. 催化裂解甲烷制氢研究进展[J]. 天然气化工—C1化学与化工, 2002, 27(3): 43-48.
MO R F, JIANG Y, ZHENG L, et al. Catalytic decomposition of methane for preparation of hydrogen [J]. Natural Gas Chemical Industry, 2002, 27(3): 43-48.
雷秋晓, 史义存, 苏子义, 等.制氢技术的现状及发展前景[J]. 山东化工, 2020, 49(8): 72-75.
LEI Q X, SHI Y C, SU Z Y, et al. Status and development prospect of hydrogen production technology [J]. Shandong Chemical Industry, 2020, 49(8): 72-75.
闫龙. 天然气蒸汽转化制氢装置节能降耗技术改造[J]. 天然气化工—C1化学与化工, 2016, 41(3): 95-97.
YAN L. Energy saving and consumption reduction retrofits in a hydrogen plant by natural gas steam reforming [J]. Natural Gas Chemical Industry, 2016, 41(3): 95-97.
ZENG W, HU C, LI L, et al. The effect of different atmosphere treatments on the performance of Ni/Nb-Al2O3 catalysts for methane reforming [J]. International Journal of Hydrogen Energy, 2023, 48(16): 6358-6369.
侯建国, 姚辉超, 王秀林, 等. “天然气+氢能”双清洁低碳能源体系构建和技术机理选择[J]. 天然气化工—C1化学与化工, 2022, 47(6): 1-5.
HOU J G, YAO H C, WANG X L, et al. Construction of “natural gas + hydrogen” dual clean and low-carbon energy system and choice of technical path [J]. Natural Gas Chemical Industry, 2022, 47(6): 1-5.
BENGAARD H S, NØRSKOV J K, SEHESTED J, et al. Steam reforming and graphite formation on Ni catalysts [J]. Journal of Catalysis, 2002, 209(2): 365-384.
WEI J M, IGLESIA E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. Journal of Catalysis, 2004, 224(2): 370-383.
MAIER L, SCHADEL B, DELGADO K H, et al. Steam reforming of methane over nickel: Development of a multi-step surface reaction mechanism [J]. Topics in Catalysis, 2011, 54: 845-858.
WANG B W, CHENG Y, WANG C Y, et al. Steam reforming of methane in a gliding arc discharge reactor to produce hydrogen and its chemical kinetics study [J]. Chemical Engineering Science, 2022, 253: 117560.
UNRUEAN P, PLIANWONG T, PRUKSAWAN S, et al. Kinetic Monte-Carlo simulation of methane steam reforming over a nickel surface [J]. Catalysts, 2019, 9(11): 946.
ZHENG H, LIU Q. Kinetic study of nonequilibrium plasma-assisted methane steam reforming [J]. Mathematical Problems in Engineering, 2014, 2014: 938618.
DELGADO K H, MAIER L, TISCHER S, et al. Surface reaction kinetics of steam- and CO2-reforming as well as oxidation of methane over nickel-based catalysts [J]. Catalysts, 2015, 5(2): 871-904.
WANG F F, LI Y J, WANG Y Z, et al. Mechanism insights into sorption enhanced methane steam reforming using Ni-doped CaO for H2 production by DFT study [J]. Fuel, 2022, 319: 123849.
齐飞, 李玉阳, 苑文浩, 等. 燃烧反应动力学[M]. 北京: 科学出版社, 2021.
QI F, LI Y Y, WAN W H, et al. Combustion reaction kinetics [M]. Beijing: Science Press, 2021.
SUMMA P, SAMOJEDEN B, MOTAK M. Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials [J]. Polish Journal of Chemical Technology, 2019, 21(2): 31-37.
LARSON R S. PLUG: A FORTRAN program for the analysis of PLUG flow reactors with gas-phase and surface chemistry [R]. Albuquerque: Office of Scientific and Technical Information Technical Reports, 1996.
POURALI M, ESFAHANI J A, SADEGHI M A, et al. Simulation of methane steam reforming in a catalytic micro-reactor using a combined analytical approach and response surface methodology [J]. International Journal of Hydrogen Energy, 2021, 46(44): 22763-22776.
DELGADO K H, MAIER L, TISCHER S, et al. Surface reaction kinetics of steam- and CO2-reforming as well as oxidation of methane over nickel-based catalysts [J]. Catalysts, 2015, 5(2):871-904.
SIERADZKA M, RAJCA P, ZAJEMSKA M, et al. Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software-Ansys Chemkin-Pro [J]. Journal of Cleaner Production, 2020, 248: 119277.
LOUGOU B G, HONG J R, SHUAI Y, et al. Production mechanism analysis of H2 and CO via solar thermochemical cycles based on iron oxide (Fe3O4) at high temperature [J]. Solar Energy, 2017, 148: 117-127.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution