浏览全部资源
扫码关注微信
1.北方民族大学 化学与化学工程学院,宁夏 银川 750021
2.北方民族大学 国家民委化工技术基础重点实验室,宁夏 银川 750021
3.北方民族大学 宁夏太阳能化学转化技术重点实验室,宁夏 银川 750021
4.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
Published:25 July 2024,
Received:08 April 2024,
Revised:10 May 2024,
扫 描 看 全 文
王燕霞,付娜,胡修德.烟气CO2化学吸收与加氢转化催化剂研究进展[J].低碳化学与化工,2024,49(07):84-95.
WANG Yanxia,FU Na,HU Xiude.Research progress of CO2 chemical absorption from flue gas and hydroconversion catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):84-95.
王燕霞,付娜,胡修德.烟气CO2化学吸收与加氢转化催化剂研究进展[J].低碳化学与化工,2024,49(07):84-95. DOI: 10.12434/j.issn.2097-2547.20240146.
WANG Yanxia,FU Na,HU Xiude.Research progress of CO2 chemical absorption from flue gas and hydroconversion catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):84-95. DOI: 10.12434/j.issn.2097-2547.20240146.
燃煤电厂燃烧发电过程排放大量CO
2
,烟气中CO
2
高效捕集和资源化利用对于实现碳减排而言尤为重要。燃烧后烟气CO
2
化学吸收是目前最成熟的分离方法,目前已有相关CO
2
捕集项目成功运行,但仍存在高成本
、高能耗的缺点。新型高效CO
2
吸收剂开发、工艺优化成为当前研究的热点。烟气中CO
2
化学吸收串联加氢催化合成化学品、燃料是燃煤电厂进行碳减排的有效途径。随着CO
2
催化转化研究的不断深入,国内外学者在CO
2
催化加氢制化学品领域取得了一定进展。首先,介绍了单胺吸收剂碳捕集原理和再生能耗,进一步综述了新型吸收剂(混合胺溶液、两相吸收剂和功能化离子液体)的CO
2
吸收性能、节能降耗原理及碳捕集流程,探讨了CO
2
解吸催化剂、工艺参数优化在降低再生能耗方面的研究现状。其次,从不同类型的CO
2
加氢转化产物(甲醇、低碳烯烃和高碳烃)出发,对CO
2
催化加氢催化剂的研究进展进行了阐述。最后,展望了燃烧后烟气CO
2
化学吸收法及CO
2
加氢催化剂的发展方向。
A large amount of CO
2
is emitted from power generation process of coal-fired power plants. Efficient capture and resource utilization of CO
2
from flue gas is particularly important for carbon emission reduction. CO
2
chemical absorption from post-combustion flue gas is the most mature separation method
and some CO
2
capture projects have been successfully implemented
but there are still shortcomings of high cost and high energy consumption. The development of new efficient CO
2
absorbents and process optimization have become the focus of current research. The connection of CO
2
chemical absorption and catalytic synthesis of chemicals and fuels from CO
2
hydrogenation in flue gas is an effective way to reduce carbon emission in coal-fired power plants. With the continuous deepening of CO
2
catalytic conversion research
domestic and foreign researchers have made some progress in CO
2
catalytic hydrogenation to chemicals. Firstly
the carbon capture mechanism and renewable energy consumption of monoamine absorbents were introduced
and the CO
2
absorption performance
energy consumption reduction principle and carbon capture process of new absorbents (mixed amine solution
two-phase absorbent and functionalized ionic liquid) were further reviewed. The research status of CO
2
desorption catalysts and process parameter optimization in reducing renewable energy consumption were summarized. Then
based on the diff
erent types of CO
2
hydrogenation products (methanol
low carbon olefins and high carbon hydrocarbons)
the research progress of CO
2
catalytic hydrogenation catalysts was investigated. Finally
the development direction of CO
2
capture by chemical absorption method after combustion and CO
2
hydrogenation catalysts were prospected.
CO2捕集化学吸收催化加氢甲醇烯烃高碳烃
CO2 capturechemical absorptioncatalytic hydrogenationmethanololefinshigh carbon hydrocarbons
International Energy Agency. CO2 emissions in 2023 [R]. Paris: IEA Publications, 2024.
Energy Institute. Statistical review of world energy 2023 [R]. London: Energy Institute Publications, 2024.
沈海燕, 李芳芹, 任建兴, 等. 化学吸收法捕集二氧化碳的研究进展[J].无机盐工业, 2024, 56(5): 11-19+44.
SHEN H Y, LI F Q, REN J X, et al. Research progress of carbon dioxide capture by chemical absorption [J]. Inorganic Chemical Industry, 2024, 56(5): 11-19+44.
刘大李, 王聪, 刘新伟, 等. 用于二氧化碳捕集的化学吸收剂研究进展[J]. 低碳化学与化工, 2024, 49(1): 94-112.
LIU D L, WANG C, LIU X W, et al. Research advances in chemical absorbents for carbon dioxide capture [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(1): 94-112.
苏辉辉, 王恩禄, 徐逸飞. 液体吸收剂捕集燃烧后CO2的研究进展[J/OL]. 化工进展: 1-19[2024-04-08]. DOI: 10.16085/j.issn.1000-6613.2023-1523http://dx.doi.org/10.16085/j.issn.1000-6613.2023-1523.
SU H H, WANG E L, XU Y F. Advances in research on capture of post-combustion carbon dioxide by liquid adsorbents [J/OL]. Chemical Industry and Engineering Progress: 1-19[2024-04-08]. DOI: 10.16085/j.issn.1000-6613.2023-1523http://dx.doi.org/10.16085/j.issn.1000-6613.2023-1523.
PEU S D, DAS A, HOSSAIN M S, et al. A comprehensive review on recent advancements in absorption-based post combustion carbon capture technologies to obtain a sustainable energy sector with clean environment [J]. Sustainability, 2023, 15: 5827.
ZHOU X B, WANG D, LIU C, et al. Enhancing CO2 capture of an aminoethyl ethanolamine-based non-aqueous absorbent by using tertiary amine as a proton-transfer mediator: From performance to mechanism [J]. Journal of Environmental Science, 2024, 140: 146-156.
PAREKH A, CHATURVEDI G, DUTTA A. Sustainability analyses of CO2 sequestration and CO2 utilization as competing options for mitigating CO2 emissions [J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102942.
RA E C, JANG S, OH D G, et al. A versatile hybrid catalyst platform of Na/ZnFe2O4 and zeolite for selective hydrocarbon production from CO2 hydrogenation [J]. Chemical Engineering Journal, 2023, 470: 144335.
王晗, 樊升, 王森, 等. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报, 2021, 49(11): 1609-1619.
WANG H, FAN S, WANG S, et al. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products [J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1609-1619.
石志盛. Cu基、In2O3基催化剂的制备及其CO2加氢制甲醇性能研究[D]. 南京: 东南大学, 2019.
SHI Z S. Catalytic carbon dioxide hydrogenation to methanol on copper-based and indium oxide-based catalysts [D]. Nanjing: Southeast University, 2019.
刘飞. 胺基两相吸收剂捕集二氧化碳机理研究[D]. 杭州:浙江大学, 2020.
LIU F. Study on mechanism of amine based biphasic solvents for CO2 capture [D]. Hangzhou: Zhejiang University, 2020.
OH S Y, BINNS M, CHO H, et al. Energy minimization of MEA-based CO2 capture process [J]. Applied Energy, 2016, 169: 353-362.
AGHEL B, JANATI S, WONGWISES S, et al. Review on CO2 capture by blended amine solutions [J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715.
ZHANG N, SHI H C, WANG H Y, et al. Evaluating CO2 capture performance of trisolvent MEA-BEA-AMP with heterogeneous catalysts in a novel bench-scale pilot plant [J]. ACS Omega, 2023, 9(1): 1838-1849.
林海周, 罗海中, 裴爱国, 等. 燃煤电厂烟气 MDEA/PZ 混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(4): 2046-2055.
LIN H Z, LUO H Z, PEI A G, et al. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2046-2055.
GAUTAM A, MONDAL M K. Novel aqueous amine blend of 2-(butylamino)ethanol and 2-dimethyla-minoethanol for CO2 capture: Equilibrium CO2 loading, RSM optimization, desorption study, characterization and toxicity assessment [J]. Separation and Purification Technology, 2023, 322: 124279.
ZHENG L Y, GUO Z Y, LIU H, et al. Experimental study on single CO2 bubbles freely rising in MEA/DEEA blended solutions: Bubble behavior and mass transfer [J]. Chemical Engineering Science, 2024, 287: 119751.
LI L, VOICE A K, LI H, et al. Amine blends using concentrated piperazine [J]. Energy Procedia, 2013, 37: 353-369.
LIU F, FANG M X, YI N T, et al. Research on alkanolamine-based physical-chemical solutions as biphasic solvents for CO2 capture [J]. Energy & Fuels, 2019, 33(11): 11389-11398.
SMITH K, XIAO G, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy & Fuels, 2013, 28(1): 299-306.
GAZZANI M, SUTTER D, MAZZOTTI M. Improving the efficiency of a chilled ammonia CO2 capture plant through solid formation: A thermodynamic analysis [J]. Energy Procedia, 2014, 63: 1084-1090.
WANG N, PENG Z, GAO H, et al. New insight and evaluation of secondary amine/N-butanol biphasic solutions for CO2 capture: Equilibrium solubility, phase separation behavior, absorption rate, desorption rate, energy consumption and ion species [J]. Chemical Engineering Journal, 2022, 431: 133912.
刘练波. 相变型CO2化学吸收剂研发及中试验证[D]. 杭州: 浙江大学, 2023.
LIU L B. The development of phase change absorbent for CO2 chemical absorption and pilot test [D]. Hangzhou: Zhejiang University, 2023.
JIANG W, LI X, GAO G, et al. Advances in applications of ionic liquids for phase change CO2 capture [J]. Chemical Engineering Journal, 2022, 445: 136767.
ZHANG S, SHEN Y, WANG L, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges [J]. Applied Energy, 2019, 239: 876-897.
杨灿, 孙雪琦, 尚明华, 等. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432.
YANG C, SUN X Q, SHANG M H, et al. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432.
LIU F, SHEN Y, SHEN L, et al. Sustainable ionic liquid organic solution with efficient recyclability and low regeneration energy consumption for CO2 capture [J]. Separation and Purification Technology, 2021, 275: 119123.
YOON B, CHEN S J, VOTH G A. On the key influence of amino acid ionic liquid anions on CO2 capture [J]. Journal of the American Chemical Society, 2024, 146(2): 1612-1618.
VEGA F, BAENA-MORENO F M, FERNÁNDEZ L M G, et al. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale [J]. Applied Energy, 2020, 260: 114313.
LIU L, FANG M, XU S, et al. Development and testing of a new post-combustion CO2 capture solvent in pilot and demonstration plant [J]. International Journal of Greenhouse Gas Control, 2022, 113: 103513.
YANG Z, SHEN Y, YANG H, et al. A review of CO2 catalytic regeneration research based on MEA solution [J]. Frontiers Energy Research, 2023, 11: 1257218.
JI L, LI J B, ZHAI R R, et al. Metal oxyhydroxide catalysts promoted CO2 absorption and desorption in amine-based carbon capture: A feasibility study [J]. ACS Omega, 2022, 7: 44620-44630.
GAO H G, HUANG Y F, ZHANG X W, et al. Catalytic performance and mechanism of SO42-/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution [J]. Applied Energy, 2020, 259: 114179.
HU X, YU Q, CUI Y, et al. Toward solvent development for industrial CO2 capture by optimizing the catalyst-amine formulation for lower energy consumption in the solvent regeneration process [J]. Energy & Fuels, 2019, 33(11): 11507-11515.
RAO L, JIN B H, CHEN D, et al. Energy-saving CO2 desorption from amine solution over Fe/SiO2/biochar catalysts: Desorption performance, structure-activity relationship, and mechanism [J]. Chemical Engineering Journal, 2024, 483, 149413.
WASEEM M, MARZOUQI M A, GHASEM N. A review of catalytically enhanced CO2-rich amine solutions regeneration [J]. Journal of Environmental Chemical Engineering, 2023, 11: 110188.
SAHRAIE S, RASHIDI H, VALEH-E-SHEYDA P. An optimization framework to investigate the CO2 capture performance by MEA: Experimental and statistical studies using Box-Behnken design [J]. Process Safety and Environmental Protection, 2019, 122: 161-168.
王保登, 崔倩, 闫学良, 等. 燃煤电厂溶剂法碳捕集中试系统分析[J]. 现代化工, 2022, 42(12): 242-246.
WANG B D, CUI Q, YAN X L, et al. Analysis on slipstream CO2 capture pilot facility at coal fired power plant [J]. Modern Industrial Chemistry, 2022, 42(12): 242-246.
董文峰. 基于低成本塑料填料和高效板式换热器的CO2化学吸收技术及工艺研究[D]. 杭州: 浙江大学, 2022.
DONG W F. Study on CO2 chemical absorption technology with low-cost polypropylene packing and high-efficiency plate heat exchangers [D]. Hangzhou: Zhejiang university, 2022.
SHEWCHUK S R, MUKHERJEE A, DALAI A K. Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation of CO2 into renewable energy source: A review [J]. Chemical Engineering Science, 2021, 243: 116735.
齐天勤机. 新型CO2加氢制甲醇铜基催化剂的制备与性能研究[D]. 大连: 大连理工大学, 2022.
QI T Q J. Study on Catalytic Performance and preparation of novel copper-based catalyst for CO2 hydrogenation to methanol [D]. Dalian: Dalian University of Technology, 2022.
孙新凯, 罗驹华, 顾明敏, 等. CO2加氢制甲醇 Cu-Zn-Al 水滑石催化剂的改性研究[J]. 工业催化, 2020, 28(10): 37-41.
SUN X K, LUO J H, GU M M, et al. Study on the modification of Cu-Zn-Al hydrotalcite catalyst for the hydrogenation of carbon dioxide to methanol [J]. Industrial Catalysis, 2020, 28(10): 37-41.
戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596.
DAI W H, XIN Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596
DUMA Z G, DYOSIBA X, MOMA J, et al. Thermocatalytic hydrogenation of CO2 to methanol using Cu-ZnO bimetallic catalysts supported on metal-organic frameworks [J]. Catalysts, 2022, 12(4): 401.
SONG L, WANG H, WANG S, et al. Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol [J]. Applied Catalysis B: Environmental, 2023, 322: 122137.
WANG L X, GUAN E J, WANG Y Q, et al. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts [J]. Nature Communications, 2020, 11(1): 1033.
ZAMAN S F, OJELADE O A, ALHUMADE H, et al. Elucidating the promoting role of Ca on PdZn/CeO2 catalyst for CO2 valorization to methanol [J]. Fuel, 2023, 343: 127927.
GUO T, GUO Q, LI S Z, et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol [J]. Journal of Catalysis, 2022, 407: 312-321.
SUN K, SHEN C, ZOU R, et al. Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2 [J]. Applied Catalysis B: Environmental, 2023, 320: 122018.
SHI Y, SU W, WEI X, et al. Carbon coated In2O3 hollow tubes embedded with ultra-low content ZnO quantum dots as catalysts for CO2 hydrogenation to methanol [J]. Journal of Colloid and Interface Science, 2023, 636: 141-152.
TANG S, FENG Z, HAN Z, et al. Mononuclear Re sites on In2O3 catalyst for highly efficient CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2023, 417: 462-472.
ZHANG Z, SHEN C Y, SUN K, et al. Improvement in the activity of Ni/In2O3 with the addition of ZrO2 for CO2 hydrogenation to methanol [J]. Catalysis Communications, 2022, 162: 106386.
CUI P, SUN R, XIAO L, et al. Exploring the effects of the interaction of carbon and MoS2 catalyst on CO2 hydrogenation to methanol [J]. International Journal of Molecular Sciences, 2022, 23(9): 5220.
LIU X L, WANG M H, ZHOU C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34 [J]. ChemComm, 2017, 2(54): 140-143.
TAN L, ZHANG P, CUI Y, et al. Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation [J]. Fuel Processing Technology, 2019, 196: 106174.
WEI J, GE Q, YAO R, et al. Directly converting CO2 into a gasoline fuel [J]. Nature Communications, 2017, 8(1): 15174.
LIANG B, DUAN H, SUN T, et al. Effect of Na Promoter on Fe-based catalyst for CO2 hydrogenation to alkenes [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932.
GUO L, SUN J, GE Q, et al. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons [J]. Journal of Materials Chemistry A, 2018, 6(46): 23244-23262.
吴大凯, 王旭, 高新华, 等. 层状 K-Fe-Zn-Ti催化剂的制备及其对二氧化碳加氢制烯烃反应的催化性能[J]. 燃料化学学报, 2019, 47(8): 949-956.
WU D K, WANG X, GAO X H, et al. Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins [J]. Journal of Fuel Chemistry and Technology, 2019, 47(8):949-956.
董子超, 吴玉, 张博风, 等. 新型FeCo双金属催化剂催化 CO2 加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656.
DONG Z C, WU Y, ZHANG B F, et al. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins [J]. CIESC Journal, 2021, 72(5): 2647-2656.
LI W, ZHANG A, JIANG X, et al. The anti-sintering catalysts: Fe-Co-Zr polymetallic fibers for CO2 hydrogenation to C2=~C4= rich hydrocarbons [J]. Journal of CO2 Utilization, 2018, 23: 219-225.
WITOON T, LAPKEATSEREE V, NUMPILAI T, et al. CO2 hydrogenation to light olefins over mixed Fe-Co-K-Al oxides catalysts prepared via precipitation and reduction methods [J]. Chemical Engineering Journal, 2022, 428: 131389.
JIN K, WEN C, CHEN L, et al. In situ synthesis of highly dispersed Fe/C catalysts with pomelo peel as carbon source in CO2 hydrogenation to light olefins [J]. Fuel, 2023, 333: 126412.
陈静宇, 张建红, 盛浩, 等. CuZnTiO2/SAPO-34 双功能催化剂的设计, 制备及其用于CO2加氢制烯烃性能[J]. 化工进展, 2019, 39(2): 567-576.
CHEN J Y, ZHANG J H, SHENG H, et al. Design and preparation of Cu-Zn-M(Zr/Ti)/SAPO-34 bifunctional catalyst and its catalytic performance for CO2 hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2019, 39(2): 567-576.
TANG X, MAO Y, ZHOU N, et al. Doping SiO2 in CuO-ZnO-ZrO2/SAPO-34 composite for the CO2 hydrogenation to light olefins [J]. Chemistry Select, 2023, 8(13): e202204764.
WANG S, ZHANG L, WANG P, et al. Highly effective conversion of CO2 into light olefins abundant in ethene [J]. Chem, 2022, 8(5): 1376-1394.
LIU Q, DING J, WANG R N, et al. FeZnK/SAPO-34 catalyst for efficient conversion of CO2 to light olefins [J]. Catalysis Letters, 2023, 153(1): 54-61.
WANG S, JI Y, LIU X, et al. Potassium as a versatile promoter to tailor the distribution of the olefins in CO2 hydrogenation over iron-based catalyst [J]. ChemCatChem, 2022, 14(6): 1-11.
HUANG J, JIANG S, WANG M, et al. Dynamic evolution of Fe and carbon species over different ZrO2 supports during CO prereduction and their effects on CO2 hydrogenation to light olefins [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(23): 7891-7903.
高新华, 卢鹏飞, 陈国辉, 等. K-Fe3O4/Ni-AlMCM-41 串联催化CO2加氢制高碳烃[J]. 燃料化学学报, 2021, 49(4): 504-512.
GAO X H, LU P F, CHEN G H, et al. Performance of K-Fe3O4/Ni-AlMCM-41 tandem catalyst for CO2 hydrogenation to long-chain hydrocarbons [J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 504-512.
VELTY A, CORMA A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels [J]. Chemical Society Reviews, 2023, 52(5): 1773-1946.
GAO P, LI S G, BU X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst [J]. Nature Chemistry, 2017, 9(10): 1019-1024.
AHMED S, IRSHAD M, YOON W, et al. Evaluation of MgO as a promoter for the hydrogenation of CO2 to long-chain hydrocarbons over Fe-based catalysts [J]. Applied Catalysis B: Environmental, 2023, 338: 123052.
AZHARI N J, NURDINI N, MARDIANA S, et al. Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review [J]. Journal of CO2 Utilization, 2022, 59: 101969.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution