浏览全部资源
扫码关注微信
1.四川大学 化学工程学院,四川 成都 610065
2.四川大学 新能源与低碳技术研究院,四川 成都 610065
Published:25 July 2024,
Received:04 April 2024,
Revised:13 May 2024,
扫 描 看 全 文
常栋渊,唐思扬,钟山等.不同烟气CO2含量下近等温相变捕集工艺调节策略模拟分析[J].低碳化学与化工,2024,49(07):69-75.
CHANG Dongyuan,TANG Siyang,ZHONG Shan,et al.Simulation and analysis of regulation strategies for near isothermal phase change capture process under different CO2 content of flue gas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):69-75.
常栋渊,唐思扬,钟山等.不同烟气CO2含量下近等温相变捕集工艺调节策略模拟分析[J].低碳化学与化工,2024,49(07):69-75. DOI: 10.12434/j.issn.2097-2547.20240141.
CHANG Dongyuan,TANG Siyang,ZHONG Shan,et al.Simulation and analysis of regulation strategies for near isothermal phase change capture process under different CO2 content of flue gas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):69-75. DOI: 10.12434/j.issn.2097-2547.20240141.
CO
2
相变捕集工艺具有较低的再生能耗,但在实际生产中,上游工艺产生的烟气中CO
2
含量(物质的量分数,下同)不稳定,可导致工艺的整体能耗发生变化,因此需研究不同烟气CO
2
含量下该工艺参数的调节策略。通过Python语言调用Aspen Plus对近等温CO
2
相变捕集工艺进行了模拟计算,分析了不同CO
2
含量下吸收塔温度(
t
a
)、解吸塔温度(
t
d
)、液/气比(
v
)、胺浓度(
c
)、解吸液循环比(
s
)对再生能耗和CO
2
捕集率的影响以及相
应的调节策略。结果表明,
t
d
对CO
2
捕集率的影响最显著,当CO
2
含量为5.00%时,其相关性系数最高(74.78%);
t
a
对再生能耗的影响最显著,当CO
2
含量为20.00%时,其相关性系数最高(-55.26%)。在维持CO
2
捕集率大于等于90.00%的条件下,随着CO
2
含量从5.00%升高至20.00%,再生能耗从2.35 GJ/t降低至2.13 GJ/t。此外,应根据CO
2
含量对
t
a
、
t
d
、c
和
v
进行相应调节,以确保CO
2
捕集率大于等于90.00%并且再生能耗最低。
The CO
2
phase change capture process has low regeneration energy consumption
but in actual production
the CO
2
content (mole fraction
the same below) in flue gas generated by the upstream process is unstable
which can lead to changes in the overall energy consumption of the process. Therefore
it is necessary to study the adjustment strategies of the process parameters under different CO
2
content of flue gas. Using Python to invoke Aspen Plus to simulate the near isothermal CO
2
capture technology
and the effects of adsorption tower temperature (
t
a
)
desorption tower temperature (
t
d
)
liquid/gas ratio (
v
)
amine concentration (
c
) and desorption liquid circulation ratio (
s
) on the regeneration energy consumption and CO
2
capture rate and the corresponding regulation strategies were analyzed. The results show that
t
d
has the most significant effect on CO
2
capture rate
and the correlation coefficient is the highest (74.78%) when the CO
2
content is 5.00%.
t
a
has the most significant impact on regeneration energy consumption
and when CO
2
content is 20.00%
its correlation coefficient is the highest (-55.26%). With the CO
2
content increases from 5.00% to 20.00%
the regeneration energy consumption decreases from 2.35 GJ/t to 2.13 GJ/t
under the condition that the CO
2
capture rate is greater than 90.00%. In addition
t
a
t
d
c
and
v
should be adjusted accordingly according to CO
2
content to ensure that CO
2
capture rate is greater than 90.00% and the regeneration energy consumption is lowest.
CO2捕集工艺过程模拟CO2含量热泵系统参数调节
CO2 capture processprocess simulationCO2 contentheat pump systemparameters adjustment
ZHAO X M, LI X Y, LU H F, et al. Predicting phase-splitting behaviors of an amine-organic solvent-water system for CO2 absorption: A new model developed by density functional theory and statistical and experimental methods [J]. Chemical Engineering Journal, 2021, 422: 130389.
OKO E, ZACCHELLO B, WANG M H, et al. Process analysis and economic evaluation of mixed aqueous ionic liquid and monoethanolamine (MEA) solvent for CO2 capture from a coke oven plant [J]. Greenhouse Gases: Science and Technology, 2018, 8(4): 686-700.
CHAI S Y W, NGU L H, HOW B S. Review of carbon capture absorbents for CO2 utilization [J]. Greenhouse Gases: Science and Technology, 2022, 12(3): 394-427.
LI X Y, WANG Y, H LU H F, et al. Phase splitting rules of the primary/secondary amine-tertiary amine systems: Experimental rapid screening and corrected quasi-activity coefficient model [J]. Industrial & Engineering Chemistry Research, 2022, 61(23): 7709-7717.
ZHAO X M, LI X Y, LIU C J, et al. The quasi-activity coefficients of non-electrolytes in aqueous solution with organic ions and its application on the phase splitting behaviors prediction for CO2 absorption [J]. Chinese Journal of Chemical Engineering, 2022, 43: 316-323.
沈紫薇, 常栋渊, 郭本帅, 等. 水对无水相变吸收剂捕集CO2性能的影响[J]. 低碳化学与化工, 2023, 48(4): 107-113.
SHEN Z W, CHANG D Y, GUO B S, et al. Effect of water on CO2 capture performance of anhydrous phase change absorbent. [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 107-113.
NESSI E, PAPADOPOULOS A I, SEFERLIS P. A review of research facilities, pilot and commercial plants for solvent-based post-combustion CO2 capture: Packed bed, phase-change and rotating processes [J]. International Journal of Greenhouse Gas Control, 2021, 111: 103474.
ZHAO B, LIU F Z, CUI Z, et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: Process improvement [J]. Applied Energy, 2017, 185: 362-375.
RAYNAL L, BRIOT P, DREILLARD M, et al. Evaluation of the DMX process for industrial pilot demonstration-methodology and results [J]. Energy Procedia, 2014, 63: 6298-6309.
DREILLARD M, BROUTIN P, BRIOT P, et al. Application of the DMXTM CO2 capture process in steel industry [J]. Energy Procedia, 2017, 114: 2573-2589.
LIEBENTHAL U, PINTO D D D, MONTEIRO J G M S, et al. Overall process analysis and optimization for CO2 capture from coal fired power plants based on phase change solvents forming two liquid phases [J]. Energy Procedia, 2013, 37: 1844-1854.
魏炜, 曾令梓, 刘凤霞, 等. 混合醇胺捕集低浓度CO2性能研究[J]. 低碳化学与化工, 2023, 48(3): 116-122.
WEI W, ZENG L Z, LIU F X, et al. Research on performance of mixed alcohol-amine in capturing low-concentration CO2 [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 116-122.
惠武卫, 姬存民, 赵合楠, 等. 低浓度CO2捕集技术研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 19-24+98.
HUI W W, JI C M, ZHAO H N, et al. Research progress of low concentration CO2 capture technology [J]. Natural Gas Chemical Industry, 2022, 47(4): 19-24+98.
TSAI C C, LIN S T. Integration of modern computational chemistry and ASPEN PLUS for chemical process design [J]. American Institute of Chemical Engineers, 2020, 66(10): 16987.
梁斌, 唐思扬, 王皓, 等. 一种二氧化碳等温吸收捕集技术: 17138553A [P]. 2023-12-01.
LIANG B, TANG S Y, WANG H, et al. A carbon dioxide isothermal absorption and capture technology: 117138553A [P]. 2023-12-01.
LIU S, LING H, LV J, et al. New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: Absorption, desorption, phase separation, and technological process [J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20461-20471.
NAKAGAKI T, ISOGAI H, SATO H, et al. Updated e-NRTL model for high-concentration MEA aqueous solution by regressing thermodynamic experimental data at high temperatures [J]. International Journal of Greenhouse Gas Control, 2019, 82: 117-126.
AKTEMUR C, OZTURK I T, CIMSIT C. Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants [J]. Applied Thermal Engineering, 2021, 184: 116254.
LIU E B, LU X D, WANG D C. A systematic review of carbon capture, utilization and storage: Status, progress and challenges [J]. Energies, 2023, 16(6): 2865.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution