浏览全部资源
扫码关注微信
1.大连理工大学 化工学院,精细化工国家重点实验室,智能材料化工前沿科学中心,辽宁 大连 116024
2.中国石化大连石油化工研究院,辽宁 大连 116045
Published:25 July 2024,
Received:09 March 2024,
Revised:01 April 2024,
扫 描 看 全 文
夏瑶靓,边凯,刘思蕊等.PtSn@S-1&β-Mo2C串联催化剂CO2氧化丙烷脱氢制丙烯性能研究[J].低碳化学与化工,2024,49(07):96-103.
XIA Yaoliang,BIAN Kai,LIU Sirui,et al.Study on performance of PtSn@S-1&β-Mo2C tandem catalyst in CO2-oxidative propane dehydrogenation to propylene[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):96-103.
夏瑶靓,边凯,刘思蕊等.PtSn@S-1&β-Mo2C串联催化剂CO2氧化丙烷脱氢制丙烯性能研究[J].低碳化学与化工,2024,49(07):96-103. DOI: 10.12434/j.issn.2097-2547.20240096.
XIA Yaoliang,BIAN Kai,LIU Sirui,et al.Study on performance of PtSn@S-1&β-Mo2C tandem catalyst in CO2-oxidative propane dehydrogenation to propylene[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):96-103. DOI: 10.12434/j.issn.2097-2547.20240096.
PtSn双金属催化剂因具有高活性和高选择性被广泛应用于丙烷脱氢制丙烯反应中。然而在高温下,催化剂易产生积炭从而导致稳定性降低。二氧化碳氧化丙烷脱氢(CO
2
-PDH)因其有望在转化丙烷的同时兼具消除积炭和推动脱氢反应正向移动的特点,已成为新的研究热点。将逆水煤气催化剂
β
-Mo
2
C与丙烷脱氢催化剂PtSn@S-1串联用于CO
2
-PDH反应中,开发高活性、高选择性和高稳定性的催化剂,并结合XRD、CO
2
-TPD、C
3
H
6
-TPD及热重等方法对催化剂进行了表征。结果表明,在CO
2
-PDH反应中,PtSn@S-1串联加入
β
-Mo
2
C后,粉末混合的串联催化剂PtSn@S-1
&
β
-Mo
2
C的稳定性明显提升,并在连续运转1440 min内未出现失活现象,催化剂的高稳定性归因于反应过程中CO
2
消除了部分积炭。对反应条件进行了优化,发现在
n
(CO
2
):
n
(C
3
H
8
)为1.0、
m
(PtSn@S-1):
m
(
β
-Mo
2
C)为1.0:0.4时,粉末混合的串联催化剂PtSn@S-1
&
β
-Mo
2
C在CO
2
-PDH反应中表现出最佳性能,丙烷转化率在反应500 min后稳定在43.0%以上,丙烯选择性超过99%。
Bimetallic PtSn catalysts with notable activity and selectivity are widely used in propane dehydrogenation to propylene. However
at high temperature
catalysts are prone to carbon deposition
leading to a decrease in stability. CO
2
-oxidative propane dehydrogenation (CO
2
-PDH) has become a new research hotspot due to its potential to eliminate carbon deposition and promote the forward movement of dehydrogenation reaction while converting propane. The reverse water-gas shift catalyst
β
-Mo
2
C with propane dehydrogenation catalyst PtSn@S-1 were mixed in CO
2
-PDH
aiming to develop highly active
selective and stable catalysts. The catalysts were characterized by XRD
CO
2
-TPD
C
3
H
6
-TPD
and thermogravimetric analysis. The research results indicate that in CO
2
-PDH
the stability of the powder-mixe
d tandem catalyst PtSn@S-1
&
β
-Mo
2
C significantly improves by adding
β
-Mo
2
C in series to PtSn@S-1
and the catalyst remains active without deactivation during continuous operation for 1440 min
and the high stability of the catalyst is attributed to the removal of partial carbon deposition by CO
2
during the reaction process. After optimizing the reaction conditions
it is found that when
n
(CO
2
):
n
(C
3
H
8
) is 1.0 and
m
(PtSn@S-1):
m
(
β
-Mo
2
C) is 1.0:0.4
the powder-mixed tandem catalyst PtSn@S-1
&
β
-Mo
2
C exhibites the best performance in CO
2
-PDH. The propane conversion rate remaines stable at above 43.0% after 500 min and propylene selectivity exceeds 99%.
PtSn@S-1β-Mo2C串联催化剂二氧化碳氧化丙烷脱氢
PtSn@S-1β-Mo2Ctandem catalystCO2-oxidative propane dehydrogenation
SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides [J]. Chemical Reviews, 2014, 114(20): 10613-10653.
SONG S J, SUN Y Q, YANG K, et al. Recent progress in metal-molecular sieve catalysts for propane dehydrogenation [J]. ACS Catalysis, 2023, 13(9): 6044-6067.
ZHANG R, CHANG Q Y, MA F, et al. Enhanced catalytic performance of transition metal-doped Cr2O3 catalysts for propane dehydrogenation: A microkinetic modeling study [J]. Chemical Engineering Journal, 2022, 446: 136913.
DAI Y H, GAO X, WANG Q J, et al. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane [J]. Chemical Society Reviews, 2021, 50(9): 5590-5630.
GAO Y T, PENG L L, LONG J P, et al. Hydrogen pre-reduction determined Co-silica interaction and performance of cobalt catalysts for propane dehydrogenation [J]. Microporous and Mesoporous Materials, 2021, 323: 111187.
MA Y, CHEN X, GUAN Y J, et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology [J]. Journal of Catalysis, 2021, 397: 44-57.
QI L, BABUCCI M, ZHANG Y F, et al. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡≡SiOZn-OH nests in dealuminated zeolite beta [J]. Journal of the American Chemical Society, 2021, 143(50): 21364-21378.
ZHANG B F, LI G Z, ZHAI Z W, et al. PtZn intermetallic nanoalloy encapsulated in silicalite-1 for propane dehydrogenation [J]. AIChE Journal, 2021, 67(7): e17295.
WANG P, YANG M, LIAO H F, et al. Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation [J]. Cell Reports Physical Science, 2023, 4(3): 101311.
XING F L, NAKAYA Y, YASUMURA S, et al. Ternary platinum-cobalt-indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2 [J]. Nature Catalysis, 2022, 5(1): 55-65.
CHEN S, PEI C L, SUN G D, et al. Nanostructured catalysts toward efficient propane dehydrogenation [J]. Accounts of Materials Research, 2020, 1(1): 30-40.
WU L Z, REN Z Z, HE Y S, et al. Atomically dispersed Co2+ sites incorporated into a silicalite-1 zeolite framework as a high-performance and coking-resistant catalyst for propane nonoxidative dehydrogenation to propylene [J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48934-48948.
HUANG C M, HAN D M, GUAN L J, et al. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation [J]. Fuel, 2022, 307: 121790.
CHEN S, CHANG X, SUN G D, et al. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies [J]. Chemical Society Reviews, 2021, 50(5): 3315-3354.
SONG S J, YANG K, ZHANG P, et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation [J]. ACS Catalysis, 2022, 12(10): 5997-6006.
LIU L C, LOPEZ-HARO M, LOPES C W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites [J]. Nature Catalysis, 2020, 3(8): 628-638.
刘姗姗, 刘晓晖, 郭勇, 等. Fe的原位掺杂对Pt/Silicalite-1催化丙烷脱氢反应性能的提升作用[J]. 物理化学学报, 2023, 39(7): 79-88.
LIU S S, LIU X H, GUO Y, et al. Performance enhancement of Pt/Silicalite-1 by in situ doped Fe for propane dehydrogenation [J]. Acta Physico Chimica Sinica, 2023, 39(7): 79-88.
CAO L, QIU Y, LUO S Z, et al. Size effect in propane dehydrogenation on PtIn/Sn-SBA-15 [J]. Molecular Catalysis, 2022, 518: 112081.
FAN X Q, LIU D D, SUN X Y, et al. Mn-doping induced changes in Pt dispersion and PtxMny alloying extent on Pt/Mn-DMSN catalyst with enhanced propane dehydrogenation stability [J]. Journal of Catalysis, 2020, 389: 450-460.
胡慧敏, 崔静, 刘丹丹, 等. 过渡金属修饰对Pt/M-DMSN催化剂丙烷脱氢性能的影响[J]. 高等学校化学学报, 2022, 43(4): 124-132.
HU H M, CUI J, LIU D D, et al. Influence of different transition metal decoration on the propane dehydrogenation performance over Pt/M-DMSN catalysts [J]. Chemical Journal of Chinese Universities, 2022, 43(4): 124-132.
邢亚楠, 康磊磊, 马静远, 等. Sn1Pt单原子合金催化剂在丙烷脱氢反应中的应用[J]. 催化学报, 2023, 48(5): 164-174.
XING Y N, KANG L L, MA J Y, et al. Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 48(5): 164-174.
MOTAGAMWALA A H, ALMALLAHI R, WORTMAN J, et al. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit [J]. Science, 2021, 373(6551): 217-222.
LIU L C, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis [J]. Nature Materials, 2019, 18(8): 866-873.
YANG F W, ZHANG J, SHI Z B, et al. Advanced design and development of catalysts in propane dehydrogenation [J]. Nanoscale, 2022, 14(28): 9963-9988.
OTROSHCHENKO T, JIANG G Y, KONDRATENKO V A, et al. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts [J]. Chemical Society Reviews, 2021, 50(1): 473-527.
JIANG X, SHARMA L, FUNG V, et al. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis [J]. ACS Catalysis, 2021, 11(4): 2182-2234.
YANG Z Y, LI H, ZHOU H, et al. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation [J]. Journal of the American Chemical Society, 2020, 142(38): 16429-16436.
JACOBSON M Z. Review of solutions to global warming, air pollution, and energy security [J]. Energy & Environmental Science, 2009, 2(2): 148-173.
TOLLEFSON J. CO2 emissions set to spike in 2017 [J]. Nature, 2017, 551(7680): 283-283.
LIU L C, LOPEZ-HARO M, CALVINO J J, et al. Tutorial: Structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites [J]. Nature Protocols, 2021, 16(4): 1871-1906.
ZHANG X, LIU Y, ZHANG M T, et al. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO [J]. Chem, 2020, 6(12): 3312-3328.
ASCOOP I, GALVITA V V, ALEXOPOULOS K, et al. The role of CO2 in the dehydrogenation of propane over WO-VO/SiO2 [J]. Journal of Catalysis, 2016, 335: 1-10.
WANG W, CHEN S, PEI C L, et al. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis [J]. Science, 2023, 381(6660): 886-890.
CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability [J]. Chem, 2017, 3(2): 334-347.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution