浏览全部资源
扫码关注微信
江南大学 化学与材料工程学院,江苏 无锡 214122
Published:25 November 2024,
Received:02 March 2024,
Revised:18 March 2024,
移动端阅览
袁金标,陈杰,胥月兵等.Sn助剂调控Co/ZrO2催化剂用于CO2选择性加氢制CO[J].低碳化学与化工,2024,49(11):21-27.
YUAN Jinbiao,CHEN Jie,XU Yuebing,et al.Selective hydrogenation of CO2 to CO over Co/ZrO2 catalysts regulated by Sn promoter[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):21-27.
袁金标,陈杰,胥月兵等.Sn助剂调控Co/ZrO2催化剂用于CO2选择性加氢制CO[J].低碳化学与化工,2024,49(11):21-27. DOI: 10.12434/j.issn.2097-2547.20240079.
YUAN Jinbiao,CHEN Jie,XU Yuebing,et al.Selective hydrogenation of CO2 to CO over Co/ZrO2 catalysts regulated by Sn promoter[J].Low-carbon Chemistry and Chemical Engineering,2024,49(11):21-27. DOI: 10.12434/j.issn.2097-2547.20240079.
将CO
2
通过逆水煤气变换(RWGS)反应转化为CO能够有效缓解因CO
2
排放引发的环境问题,然而CO
2
的有效活化以及抑制副产物CH
4
的生成是RWGS反应的关键难点。将不同掺杂量(质量分数,下同)的Sn引入5Co/ZrO
2
(Co质量分数为5%)中进行修饰,制备了5Co
x
Sn/ZrO
2
(
x
= 1、3或5,分别对应Sn掺杂量为1%、3%或5%)催化剂,并对5Co/ZrO
2
和5Co
x
Sn/ZrO
2
的催化CO
2
加氢反应性能评价过程中的各项实验参数进行了调节和筛选,用于探究Sn助剂对活性组分以及催化性能的影响。其中,5Co5Sn/ZrO
2
具有最佳的RWGS催化性能,其在600 °C下预还原2 h后,在反应温度为500 ℃、压力为0.1 MPa和体积空速为36000 mL/(g·h)的反应条件下,CO
2
转化率达到11.9%,CO选择性为99.4%。采用XRD、H
2
-TPR和H
2
-TPD等表征方法综合分析了Sn助剂在CO
2
加氢反应过程中的作用。结果表明,Sn助剂的引入将CO
2
加氢反应从甲烷化调控为RWGS反应。经过还原预处理后,Sn与Co物种形成了Co-Sn合金,新的活性位点减弱了催化剂表面吸附CO
2
、H
2
和CO的性能。与5Co/ZrO
2
相比,5Co5Sn/ZrO
2
的H
2
吸附和活化性能减弱,CO
2
和CO吸附量大幅降低,降低了CO
2
加氢的活性并抑制了CO
2
深度加氢,使得催化剂的催化性能降低,CH
4
选择性降低,CO选择性升高至
约100%。
The conversion of CO
2
to CO via reverse water gas transformation (RWGS) reaction can present a promising strategy to mitigate the environmental impact of CO
2
emission. However
the RWGS reaction encounters notable challenges
such as the efficient activation of CO
2
and the suppressed generation of CH
4
. Different doping contents (mass fractions
the same below) of Sn were introduced into 5Co/ZrO
2
(Co mass fraction of 5%) for modification
and 5Co
x
Sn/ZrO
2
(
x
= 1
3 or 5
corresponding to Sn doping content of 1%
3% or 5%) catalysts were prepared. The experimental parameters for evaluating the catalytic performances of 5Co/ZrO
2
and 5Co
x
Sn/ZrO
2
in CO
2
hydrogenation reaction were adjusted and screened to explore the influence of Sn additives on the active components and catalytic performance. Among them
5Co5Sn/ZrO
2
shows the best RWGS catalytic performance. After pre-reduction for 2 h at 600 ℃
under reaction conditions of temperature of 500 ℃
pressure of 0.1 MPa and space velocity of 36000 mL/(g·h)
the CO
2
conversion rate reaches 11.9%
and the CO selectivity is 99.4%. The role of Sn promoter in CO
2
hydrogenation reaction was comprehensively analyzed by characterization methods such as XRD
H
2
-TPR
and H
2
-TPD. The results indicate that the introduction of Sn regulates the CO
2
hydrogenation reaction from methanation to RWGS. After reduction
Sn and Co species form Co-Sn alloy
and new active sites reduce the ability of the catalyst surface to adsorb CO
2
H
2
and CO. Compared with 5Co/ZrO
2
5Co5Sn/ZrO
2
shows weaker adsorption and activation ability of H
2
and much lower adsorption amount of CO
2
and CO
which reduces the activity of CO
2
hydrogenation a
nd inhibits the deep CO
2
hydrogenation
resulting in a decrease in the catalytic performance of the catalyst
a decrease in CH
4
selectivity and an increase in CO selectivity to about 100%.
CO2加氢RWGS选择性转换Co-Sn合金化学吸附
CO2 hydrogenationRWGSselectivity switchCo-Sn alloychemisorption
ZANDALINAS S I, FRITSCHI F B, MITTLER R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster [J]. Trends in Plant Science, 2021, 26(6): 588-599.
AL-GHUSSAIN L. Global warming: Review on driving forces and mitigation [J]. Environmental Progress & Sustainable Energy, 2019, 38(1): 13-21.
WEI J, YAO R W, HAN Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons [J]. Chemical Society Reviews, 2021, 50(19): 10764-10805.
AHMED R, LIU G J, YOUSAF B, et al. Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—A review [J]. Journal of Cleaner Production, 2020, 242: 118409.
GAO W L, LIANG S Y, WANG R J, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges [J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
CARGNELLO M, JAÉN J J D, GARRIDO J C H, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3 [J]. Science, 2012, 337(6095): 713-717.
FRONTERA P, MACARIO A, FERRARO M, et al. Supported catalysts for CO2 methanation: A review [J]. Catalysts, 2017, 7(12): 59.
NGUYEN T H, KIM H B, PARK E D. CO and CO2 methanation over CeO2-supported cobalt catalysts [J]. Catalysts, 2022, 12(2): 212.
XIONG S, YANG X L, ZHAO B, et al. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions [J]. Journal of Energy Chemistry, 2017, 26(5): 854-867.
定明月, 杨勇, 相宏伟, 等. 费托合成Fe基催化剂中铁物相与活性的关系[J]. 催化学报, 2010, 31(9): 1145-1150.
DING M Y, HUANG Y, XIANG H W, et al. Relationship between iron phase and activity of iron-based Fischer-Tropsch synthesis catalyst [J]. Chinese Journal of Catalysis, 2010, 31(9): 1145-1150.
OJEDA M, NABAR R, NILEKAR A U, et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis [J]. Journal of Catalysis, 2010, 272(2): 287-297.
WANG X, SHI H, KWAK J H, et al. Mechanism of CO2 hydrogenation on Pd/Al2O3 Catalysts: Kinetics and transient DRIFTS-MS studies [J]. ACS Catalysis, 2015, 5(11): 6337-6349.
GARBARINO G, BELLOTTI D, RIANI P, et al. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability [J]. International Journal of Hydrogen Energy, 2015, 40(30): 9171-9182.
WANG J, SUN K H, JIA X Y, et al. CO2 hydrogenation to methanol over Rh/In2O3 catalyst [J]. Catalysis Today, 2021, 365: 341-347.
FAN Q Y, LI S Y, ZHANG L, et al. Regulation of product distribution in CO2 hydrogenation by modifying Ni/CeO2 catalysts [J]. Journal of Catalysis, 2022, 414: 53-63.
WANG M R, ZHANG G H, ZHU J, et al. Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation [J]. Chemical Engineering Journal, 2022, 446: 137217.
陈加扬, 陈杰, 李玉峰, 等. 疏水二氧化硅球调控铁基催化剂在常压二氧化碳费托合成反应中的性能研究[J]. 低碳化学与化工, 2023, 48(3): 32-40.
CHEN J Y, CHEN J, LI Y F, et al. Study on performance of iron-based catalysts regulated by hydrophobic silica spheres in Fischer-Tropsch synthesis of carbon dioxide at atmospheric pressure [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 32-40.
YU W Z, FU X P, XU K, et al. CO2 methanation catalyzed by a Fe-Co/Al2O3 catalyst [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105594.
SREEDHAR I, VARUN Y, SINGH S A, et al. Developmental trends in CO2 methanation using various catalysts [J]. Catalysis Science & Technology, 2019, 9(17): 4478-4504.
赵玉, 张嘉兴, 王明瑞, 等. Ni@Silicalite-1催化剂的制备及其催化CO2加氢制CH4与CO性能研究[J]. 低碳化学与化工, 2023, 48(5): 38-45.
ZHAO Y, ZHANG J X, WANG M R, et al. Research on preparation of Ni@Silicalite-1 catalyst and its catalytic performance in hydrogenation of CO2 to CH4 and CO [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 38-45.
TANG Y X, ZHAO T T, HAN H C, et al. Ir-CoO active centers supported on porous Al2O3 nanosheets as efficient and durable photo‐thermal catalysts for CO2 conversion [J]. Advanced Science, 2023, 10(15): 2300122.
XIE F Q, XU S Y, DENG L D, et al. CO2 hydrogenation on Co/CeO2-δ catalyst: Morphology effect from CeO2 support [J]. International Journal of Hydrogen Energy, 2020, 45(51): 26938-26952.
曹忠, 刘宁, 崔莎, 等. 助剂对Co/SiO2催化剂逆水煤气变换反应催化性能的影响[J]. 低碳化学与化工, 2023, 48(6): 24-29.
CAO Z, LIU N, CUI S, et al. Effect of promoters on catalytic performance of Co/SiO2 catalysts for reverse water-gas shift reaction [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 24-29.
ZHANG Z Q, TONG Y Y, FANG X Z, et al. Interface-dependent activity and selectivity for CO2 hydrogenation on Ni/CeO2 and Ni/Ce0.9Sn0.1Ox [J]. Fuel, 2022, 316: 123191.
DOU J, SHENG Y, CHOONG C, et al. Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO [J]. Applied Catalysis B: Environmental, 2017, 219: 580-591.
XIN H, LIN L, LI R T, et al. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions [J]. Journal of the American Chemical Society, 2022, 144(11): 4874-4882.
YAN B H, ZHAO B H, KATTEL S, et al. Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites [J]. Journal of Catalysis, 2019, 374: 60-71.
RABEE A I M, GAID C B A, MEKHEMER G A H, et al. Combined TPR, XRD, and FTIR studies on the reduction behavior of Co3O4 [J]. Materials Chemistry and Physics, 2022, 289: 126367.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution