浏览全部资源
扫码关注微信
1.中国石油大学(北京)克拉玛依校区 工学院,新疆 克拉玛依 834000
2.新疆多介质管道安全输送重点实验室,新疆 乌鲁木齐 830011
Published:25 July 2024,
Received:06 February 2024,
Revised:25 April 2024,
扫 描 看 全 文
李欣泽,姜星宇,王德中等.基于等容热力学的超临界CO2管道减压波传播特性研究[J].低碳化学与化工,2024,49(07):129-138.
LI Xinze,JIANG Xingyu,WANG Dezhong,et al.Study on propagation characteristics of decompression wave of supercritical CO2 pipeline based on isochoric thermodynamics[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):129-138.
李欣泽,姜星宇,王德中等.基于等容热力学的超临界CO2管道减压波传播特性研究[J].低碳化学与化工,2024,49(07):129-138. DOI: 10.12434/j.issn.2097-2547.20240051.
LI Xinze,JIANG Xingyu,WANG Dezhong,et al.Study on propagation characteristics of decompression wave of supercritical CO2 pipeline based on isochoric thermodynamics[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):129-138. DOI: 10.12434/j.issn.2097-2547.20240051.
CO
2
管道泄漏的减压行为预测和断裂控制是CO
2
管道输送安全的重要研究方向,现有减压波预测模型存在气液两相声速计算误差大,临界点计算不易收敛等问题。基于等容热力学改进了当地声速计算方法,建立了新的减压波预测模型,计算分析了气体组成、初始相态、起始压力和起始温度等对减压波曲线和降压曲线的影响,并对实际工程中CO
2
管道泄漏的减压行为进行了预测。结果表明,相比燃烧后捕集或燃烧前捕集,富氧燃烧捕集气体下的初始减压波波速降低约26%,减压平台压力提高22%。随着减压过程进行,管内介质温度和压力工况点不再沿气液平衡线移动,而是直接进入气液两相区。超临界态的降压曲线与CO
2
泡点线的交点所对应的饱和压力比密相态的高约26%,减压平台压力较高。低运行温度和高运行压力能够有效降低减压平台压力。由于管道沿程运行参数的差异,管道断裂风险由管道起点依次降低,前段管段是高风险管段。本研究可为CO
2
管道设计和工程应用提供理论依据。
Predicting the decompression behavior and controlling the fracture of CO
2
pipelines are crucial research areas for the safe transport of CO
2
. Existing decompression wave prediction models have problems such as large errors in calculating the sound speed of the gas-liquid two-phase flow and difficulties in convergence near the critical point. The local sound speed calculation method based on isochoric thermodynamics was improved and a new decompression wave prediction model was established. The effects of gas compositions
initial phase state
initial pressure
and initial temperature on decompression wave curves and pressure drop curves were calculated and analyzed. Additionally
the decompression behavior of CO
2
pipeline leaks in practical engineering scenarios was predicted. The results show that compare
d to post-combustion capture or pre-combustion capture
the initial decompression wave speed under gas by oxy-fuel combustion capture is reduced by approximately 26%
and the decompression plateau pressure increases by 22%. During the decompression process
the temperature and pressure operating point of medium inside the pipeline no longer move along the gas-liquid equilibrium line but directly enter the gas-liquid two-phase region. Compared to the dense phase state
the saturation pressure corresponding to the intersection of the pressure drop curve and the CO
2
bubble point line is about 26% higher in the supercritical state
and the decompression plateau pressure is higher. Lower operating temperatures and higher operating pressures can effectively reduce the decompression plateau pressure. Due to the differences in operating parameters along the pipeline
the risk of pipeline fracture decreases sequentially from the starting point of the pipeline
with the front section of the pipeline being the high-risk section. This study provides a theoretical basis for CO
2
pipeline design and engineering applications.
超临界CO2管道输送等容热力学减压波曲线降压曲线
supercritical CO2pipeline transportisochoric thermodynamicsdecompression wave curvepressure drop curve
戴厚良, 苏义脑, 刘吉臻, 等. 碳中和目标下我国能源发展战略思考[J]. 北京石油管理干部学院学报, 2022, 29(2): 12-19.
DAI H L, SU Y N, LIU J Z, et al. Thinking of China’s energy development strategy under carbon neutrality goal [J]. Journal of Beijing Petroleum Managers Training, 2022, 29(2): 12-19.
李欣泽, 袁亮, 张超, 等. 超临界CO2管道瞬态输送工艺研究进展及方向[J]. 大庆石油地质与开发, 2024, 43(1): 22-32.
LI X Z, YUAN L, ZHANG C, et al. Research progress and direction on transient transportation process of supercritical CO2 pipeline [J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(1): 22-32.
胡其会, 李玉星, 张建, 等. “双碳”战略下中国CCUS技术现状及发展建议[J]. 油气储运, 2022, 41(4): 361-371.
HU Q H, LI Y X, ZHANG J, et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy [J]. Oil & Gas Storage and Transportation, 2022, 41(4): 361-371.
殷布泽, 黄维和, 苗青, 等. CO2管道泄漏减压特性与裂纹扩展研究现状及发展趋势[J]. 油气储运, 2023, 42(9): 1042-1054.
YIN B Z, HUANG W H, MIAO Q, et al. Status and development trends of research on CO, decompression characteristics and crack propagation [J]. Oil & Gas Storage and Transportation, 2023, 42(9): 1042-1054.
LU H, MA X, HUANG K, et al. Carbon dioxide transport via pipelines: A systematic review [J]. Journal of Cleaner Production, 2020, 266(1): 121991-121994.
陈磊, 闫兴清, 胡延伟, 等. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展, 2022, 41(3): 1241-1255.
CHEN L, YAN Z Q, HU Y W, et al. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255.
PICARD D J, BISHNOI P R. The importance of real‐fluid behavior in predicting release rates resulting from high-pressure sour-gas pipeline ruptures [J]. The Canadian Journal of Chemical Engineering, 1989, 67(1): 3-9.
AURSAND E, AURSAND P, HAMMER M, et al. The influence of CO2 mixture composition and equations of state on simulations of transient pipeline decompression [J]. International Journal of Greenhouse Gas Control, 2016, 54: 599-609.
JIE H E, XU B P, WEN J X, et al. Predicting the decompression characteristics of carbon dioxide using computational fluid dynamics [C]//International Pipeline Conference. American Society of Mechanical Engineers, 2012, 45141: 585-595.
BOTROS K K, GEERLIGS J, ROTHWELL B, et al. Effects of argon as the primary impurity in anthropogenic carbon dioxide mixtures on the decompression wave speed [J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 440-448.
DALL ACQUA D, TERENZI A, LEPORINI M, et al. A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state [J]. Applied Energy, 2017, 206: 1432-1445.
WANG C L, LI Y X, TENG L, et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines [J]. Experimental Thermal and Fluid Science, 2019, 105: 77-84.
GU S W, LI Y X, TENG L, et al. An experimental study on the flow characteristics during the leakage of high pressure CO2 pipelines [J]. Process Safety and Environmental Protection, 2019, 125: 92-101.
TENG L, ZHANG D T, LI Y X, et al. Multiphase mixture model to predict temperature drop in highly choked conditions in CO2 enhanced oil recovery [J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2016, 108: 670-679.
顾帅威, 李玉星, 滕霖, 等. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(2): 805-812.
GU S W, LI Y X, TENG L, et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes [J]. Chemical Industry and Engineering Progress, 2019, 38(2): 805-812.
梁杰, 李玉星, 刘翠伟, 等. 埋地输气管道泄漏特性实验研究[J]. 化工学报, 2019, 70(4): 1644-1652.
LIANG J, LI Y X, LIU C Y, et al. Experimental study on leakage characteristics of buried gas pipelines [J]. CIESC Journal, 2019, 70(4): 1644-1652.
MAXEY W A, KIEFNER J F, EIBER R J, et al. Ductile fracture initiation, propagation, and arrest in cylindrical vessels [M]//Fracture Toughness: Part II. ASTM International, 1972.
COSHAM A, JONES D G, ARMSTRONG K, et al. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines [C]//International Pipeline Conference. American Society of Mechanical Engineers, 2012, 45141: 465-482.
DRESCHER M, VARHOLM K, MUNKEJORD S T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions [J]. Energy Procedia, 2014, 63: 2448-2457.
赵青. 含杂质CO2不同相态管输节流及减压特性研究[D]. 青岛: 中国石油大学(华东), 2015.
ZHAO Q. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase [D]. Qingdao: China University of Petroleum (East China), 2015.
郭晓璐. CO2管道泄漏中介质压力响应、相态变化和扩散特性研究[D]. 大连: 大连理工大学, 2017.
GUO X L. Pressure response, phase transition and dispersion characteristics during CO2 pipeline releases [D]. Dalian: Dalian University of Technology, 2017.
FLÅTTEN T, LUND H. Relaxation two-phase flow models and the subcharacteristic condition [J]. Mathematical Models and Methods in Applied Sciences, 2011, 21(12): 2379-2407.
顾帅威. 不同相态CO2管道减压过程流动与温降特性研究[D]. 青岛: 中国石油大学(华东), 2019.
GU S W. A study on the flow characteristics and temperature drop of CO2 pipelines in different phase states [D]. Qingdao: China University of Petroleum (East China), 2019.
Bell I H, Deiters U K. On the construction of binary mixture p-x and T-x diagrams from isochoric thermodynamics [J]. AIChE Journal, 2018, 64(7): 2745-2757.
徐源. 含杂质超临界CO2管道裂纹延性扩展研究[D]. 西安: 西安石油大学, 2021.
XU Y. Study on the crack ductility growth of impurity supercritical CO2 pipeline [D]. Xi’an: Xi’an Shiyou University, 2021.
OOSTERKAMP T, RAMSEN J. State of the art overview of CO2 pipeline transport with relevance to offshore pipelines report [J]. The International Journal of Corrosion Processes and Corrosion Control, 2017, 52(7): 485-509.
PELETIRI S P, RAHMANIAN N, MUJTABA I M. CO2 pipeline design: A review [J]. Energies, 2018, 11(9): 2184.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution