浏览全部资源
扫码关注微信
太原理工大学 化学工程与技术学院,山西 太原 030024
Published:25 August 2024,
Received:15 January 2024,
Revised:21 February 2024,
移动端阅览
刘伟,俎浩楠,吴华帅等.助剂Na和Zn对Fe基催化剂催化CO2加氢制低碳烯烃反应性能的影响[J].低碳化学与化工,2024,49(08):107-114.
LIU Wei,ZU Haonan,WU Huashuai,et al.Effects of promoter Na and Zn on catalytic performances of Fe based catalysts for CO2 hydrogenation to light olefins[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):107-114.
刘伟,俎浩楠,吴华帅等.助剂Na和Zn对Fe基催化剂催化CO2加氢制低碳烯烃反应性能的影响[J].低碳化学与化工,2024,49(08):107-114. DOI: 10.12434/j.issn.2097-2547.20240019.
LIU Wei,ZU Haonan,WU Huashuai,et al.Effects of promoter Na and Zn on catalytic performances of Fe based catalysts for CO2 hydrogenation to light olefins[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):107-114. DOI: 10.12434/j.issn.2097-2547.20240019.
通过Fe基催化剂催化CO
2
加氢直接合成低碳烯烃是实现CO
2
资源化利用的重要途径之一。目前Fe基催化剂的CO
2
加氢反应催化活性和低碳烯烃选择性仍然较低。通过模板剂-等体积浸渍两步法制备了一系列Fe基催化剂,研究了碱金属助剂Na和过渡金属助剂Zn对Fe基催化剂催化CO
2
加氢制低碳烯烃反应性能的影响及其作用机制。结果表明,在CO
2
加氢反应中(反应条件:
t
= 320 ℃,
p
= 2.0 MPa,
V
(H
2
):
V
(CO
2
) = 3:1,空速为8000 mL/(g·h)),经助剂Zn和Na改性的Fe2Zn1-Na催化剂(
n
(Fe):
n
(Zn) = 2:1,Na的负载量(质量分数)为2%)显示出最优的催化性能(CO
2
转化率为36.5%,CO选择性为13.6%,C
2
~C
4
烯烷比为6.5)。并且在线反应80 h后,
该催化剂的催化活性和产物选择性仍保持相对稳定。采用N
2
吸/脱附、XRD、H
2
-TPR、CO-TPR、CO
2
-TPD和XPS等对反应前后的催化剂进行了表征。表征结果显示,助剂Na可以促进Fe基催化剂在反应过程中Fe
5
C
2
相的形成和稳定存在;助剂Zn的引入使Fe基催化剂上形成了ZnFe
2
O
4
物相,同时在Na的作用下,大大提高了Fe2Zn1-Na催化剂的稳定性。与Fe-Na催化剂相比,Fe2Zn1-Na催化剂中Fe物种周围的电子云密度更强,低碳烯烃选择性更高,但诱导期略微变长。Na和Zn的添加不仅能够促进Fe基催化剂的碳化过程,还能增强催化剂的表面碱性,促进CO
2
在其表面的吸附,从而提高CO
2
转化率。
The direct synthesis of light olefins through CO
2
hydrogenation catalyzed by Fe based catalysts is one of the important ways to achieve the resource utilization of CO
2
. At present
the catalytic activity and light olefin selectivity of Fe based catalysts for CO
2
hydrogenation reaction are still relatively low. A series of Fe based catalysts were prepared by a two-step method of template-equal volume impregnation. The catalytic performance and mechanism of alkali metal promoter Na and transition metal promoter Zn on Fe based catalysts for CO
2
hydrogenation to light olefins were studied. The results show that in the CO
2
hydrogenation reaction (reaction conditions:
t
= 320 ℃
p
= 2.0 MPa
V
(H
2
):
V
(CO
2
) = 3:1
space velocity of
8000 mL/(g·h))
the Fe2Zn1-Na catalyst modified with Zn and Na additives (
n
(Fe):
n
(Zn) = 2:1
Na loading (mass fraction) of 2%) shows the optimal catalytic performance (CO
2
conversion rate of 36.5%
CO selectivity of 13.6% and C
2
~C
4
olefin and alkane ratio of 6.5). Moreover
after 80 h of online reaction
the catalytic activity and product selectivity of the catalyst remaineds relatively stable. The catalysts before and after the reaction were characterized by N
2
adsorption/desorption
XRD
H
2
-TPR
CO-TPR
CO
2
-TPD and XPS. The characterization results show that the additiv
e Na can promote the formation and stable existence of Fe
5
C
2
phase in Fe based catalysts during the reaction process. The introduction of Zn as an auxiliary agent resulteds in the formation of ZnFe
2
O
4
phase on Fe based catalysts
which greatly improveds the stability of Fe2Zn-Na catalyst under the simultaneous action of Na. Compared with Fe-Na catalyst
the electron cloud density around Fe species in Fe2Zn1-Na catalyst is stronger
and the light olefin selectivity is higher
but the induction period is slightly longer. The addition of Na and Zn can not only promote the carbonization process of Fe based catalysts
but also enhance the surface alkalinity of the catalysts and promote the adsorption of CO
2
on its surface
thereby increasing the conversion rate of CO
2
.
CO2加氢低碳烯烃ZnFe2O4助剂稳定性
CO2 hydrogenationlight olefinsZnFe2O4promotersstability
张超, 张玉龙, 朱明辉, 等. CO2高值化利用新途径: 铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展, 2021, 40(2): 577-593.
ZHANG C, ZHANG Y L, ZHU M H, et al. New pathway for CO2 high-valued utilization: Fe-based catalysts for CO2 hydrogenation to low olefins [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 577-593.
李自琴, 王康洲, 高新华, 等. CO2加氢制高碳α-烯烃Fe基催化剂研究进展[J]. 低碳化学与化工, 2023, 48(3): 11-21.
LI Z Q, WANG K Z, GAO X H, et al. Research progress on Fe-based catalysts for CO2 hydrogenation to high carbon α-olefins [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 11-21.
高新华, 夏世钦, 梁洁, 等. 铁基催化剂活性相调控及其催化CO2加氢制线性α-烯烃研究进展[J]. 低碳化学与化工, 2023, 48 (5): 1-8.
GAO X H, XIA S Q, LIANG J, et al. Research progress on active phases regulation of iron-based catalysts and their CO2 catalytic hydrogenation to linear α-olefins [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 1-8.
XU Q Q, XU X Q, FAN G L, et al. Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCoxFe2-xO4 catalysts for highly efficient CO2 hydrogenation to produce light olefins [J]. Journal of Catalysis, 2021, 400: 355-366.
李梦婷, 段胜阳, 陈泓坤, 等. 二氧化碳加氢制备低碳烯烃用铁基催化剂的研究进展[J]. 辽宁化工, 2023, 52(9): 1359-1361.
LI M T, DUAN S Y, CHEN H K, et al. Research progress on iron-based catalysts for carbon dioxide hydrogenation to prepare low-carbon olefins [J]. Liaoning Chemical Industry, 2023, 52(9): 1359-1361.
OREGE J I, WEI J, HAN Y, et al. Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO2 hydrogenation [J]. Applied Catalysis B: Environmental, 2022, 316: 121640.
WITOON T, CHAIPRADITGUL N, NUMPILAI T, et al. Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins [J]. Chemical Engineering Science, 2021, 233: 116428.
YAN S, CHUN H J, LEE S, et al. Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite [J]. ACS Catalysis, 2020, 10(18): 10742-10759.
XU Y, ZHAI P, DENG Y C, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives [J]. Angewandte Chemie International Edition, 2020, 59(48): 21736-21744.
CUI X, GAO P, LI S G, et al. Selective production of aromatics directly from carbon dioxide hydrogenation [J]. ACS Catalysis, 2019, 9(5): 3866-3876.
WEI J, SUN J, WEN Z Y, et al. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins [J]. Catalysis Science & Technology, 2016, 6(13): 4786-4793.
LIANG B L, DUAN H M, SUN T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932.
ZHANG J L, LU S P, SU X J, et al. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts [J]. Journal of CO2 Utilization, 2015, 12: 95-100.
ZHANG Z Q, HUANG G X, TANG X L, et al. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation [J]. Fuel, 2022, 309: 122105.
YANG H Y, DANG Y R, CUI X, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts [J]. Applied Catalysis B: Environmental, 2023, 321: 122050.
TU W F, SUN C, ZHANG Z Z, et al. Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins [J]. Applied Catalysis B: Environmental, 2021, 298: 120567.
ZHANG C, CAO C X, ZHANG Y L, et al. Unraveling the role of zinc on bimetallic Fe5C2-ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins [J]. ACS Catalysis, 2021, 11(4): 2121-2133.
ZHANG C, XU M J, YANG Z X, et al. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins [J]. Applied Catalysis B: Environmental, 2021, 295: 120287.
杜玉成, 孙立柏, 张久兴. 纳米颗粒氧化铈的制备研究[J]. 矿冶, 2003, (4): 51-53+64.
DU Y C, SUN L B, ZHANG J X. Study on preparation of nanoparticle cerium oxide materials [J]. Mining and Metallurgy, 2003, (4): 51-53+64.
LIU W Q, CHENG S F, MALHI H S, et al. Hydrogenation of CO2 to olefins over iron-based catalysts: A review [J]. catalysts, 2022, 12: 1432-1432
ZHANG Z Q, YIN H R, GUANG D, et al. Selective hydrogenation of CO2 and CO into olefins over sodium- and zinc-promoted iron carbide catalysts [J]. Journal of Catalysis, 2021, 395: 350-361.
孙超, 张振洲, 陈宝见, 等. Na对Fe-Zn催化剂结构及CO2加氢制烯烃的影响[J]. 郑州大学学报(工学版), 2022, 43(4): 97-103.
SUN C, ZHANG Z Z, CHEN B J, et al. The effect of Na on the structure of Fe-Zn catalysts and CO2 hydrogenation to olefins [J]. Journal of Zhengzhou University (Engineering Edition), 2022, 43(4): 97-103.
LIU J H, ZHANG G H, JIANG X, et al. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons [J]. Catalysis Today, 2021, 371: 162-170.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution