浏览全部资源
扫码关注微信
1.盐城工学院 化学化工学院,江苏 盐城 224051
2.南京工业大学 材料化学工程国家重点实验室,江苏 南京 211816
Published:25 August 2024,
Received:05 January 2024,
Revised:30 January 2024,
移动端阅览
邵景玲,李杰,费兆阳等.Al、Ti或Zr改性对包埋式Ni@SiO2催化剂甲烷部分氧化制合成气性能的影响[J].低碳化学与化工,2024,49(08):66-73.
SHAO Jingling,LI Jie,FEI Zhaoyang,et al.Effects of Al, Ti or Zr modification on performances of embedded Ni@SiO2 catalysts for partial oxidation of methane to syngas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):66-73.
邵景玲,李杰,费兆阳等.Al、Ti或Zr改性对包埋式Ni@SiO2催化剂甲烷部分氧化制合成气性能的影响[J].低碳化学与化工,2024,49(08):66-73. DOI: 10.12434/j.issn.2097-2547.20240008.
SHAO Jingling,LI Jie,FEI Zhaoyang,et al.Effects of Al, Ti or Zr modification on performances of embedded Ni@SiO2 catalysts for partial oxidation of methane to syngas[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):66-73. DOI: 10.12434/j.issn.2097-2547.20240008.
包埋式结构催化剂能够有效地阻止活性组分的高温烧结,实现甲烷部分氧化(POM)反应高效制合成气。采用Stöber法制备了包埋式Ni@SiO
2
催化剂,并引入Al、Ti或Zr对其进行改性制得相应的改性催化剂。采用X射线衍射(XRD)、透射电镜(TEM)和N
2
吸/脱附等对催化剂的晶相结构、形貌和织构性质等进行了表征,并研究了改性对催化剂在POM反应制合成气(原料气组成:
V
(CH
4
):
V
(O
2
):
V
(N
2
)为2:1:3、流量为60 mL/min、压力为0.1 MPa、空速为7.2 L/(g·h)和反应时间为22 h)中催化性能的影响。结果表明,与Ni@SiO
2
相比,Ni@Al-SiO
2
可促进甲烷的活化,其催化性能明显提升,Ni@Ti-SiO
2
和Ni@Zr-SiO
2
因活性位点的阻碍而催化性能降低。在700 ℃下,反应稳定后,Ni@SiO
2
和Ni@Al-SiO
2
的CH
4
转化率分别为86%和80%,CO选择性均为90%左右,H
2
选择性分别为93%和88%。经8 h稳定性测试后,与Ni@SiO
2
相比,Ni@Ti-SiO
2
和Ni@Zr-SiO
2
的CH
4
转化率、CO选择性和H
2
选择性均明显降低。活性位点的减少和积炭是导致催化剂失活的主要原因,积炭未造成活性位点的完全覆盖,催化剂仍能保持稳定的POM催化性能。
The embedded catalysts can effectively prevent the sintering behavior
and realize the high activity in partial oxidation of methane (POM) reaction. The embedded Ni@SiO
2
catalysts were prepared by Stöber method
and the Al
Ti or Zr were used to modify them. Various characterizations
such as X-ray diffraction (XRD)
transmission electron microscope (TEM) and N
2
adsorption/desorption
were employed to the characterizations of crystalline phase structures
morphologies and texture parameters of catalysts. The effects of modification of catalysts on the catalytic POM performance were further investigated under the feed gases compositions of
V
(CH
4
):
V
(O
2
):
V
(N
2
) of 2:1:3
gas flow rate of 60 mL/min
pressure of 0.1 MPa
space velocity of 7.2 L/(g·h) and reaction time of 22 h. The results show that compared with Ni@SiO
2
catalyst
the Ni@Al-SiO
2
catalyst can promote the activation of methane and its catalytic performance is improved. However
the Ni@Ti-SiO
2
and Ni@Zr-SiO
2
catalysts show the decreased catalytic performances because of the obstruction of active sites. At 700 ℃
the CH
4
conversation rates of Ni@Al-SiO
2
and Ni@SiO
2
are
86% and 80%
the CO selectivities are both about 90%
and the H
2
selectivities are 93% and 88%
respectively. However
compared with Ni@SiO
2
catalyst
the CH
4
conversion rates
CO selectivities and H
2
selectivities of Ni@Ti-SiO
2
and Ni@Zr-SiO
2
are significantly reduced. It reveals that the catalyst deactivation can be mainly ascribed to the loss of active sites and carbon deposit. But the active sites are not completely covered by deposited carbon
an
d the catalyst still maintain robust catalytic POM performance.
Ni@SiO2催化剂包埋式结构催化剂改性甲烷部分氧化积炭
Ni@SiO2 catalystsembedded structurecatalyst modificationpartial oxidation of methanecarbon deposit
CHRISTIAN-ENGER B, LODENG R, HOLMEN A, et al. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts [J]. Applied Catalysis A: General, 2008, 346: 1-27.
JANG W J, SHIM J O, KIM H M, et al. A review on dry reforming of methane in aspect of catalytic properties [J]. Catalysis Today, 2019, 324: 15-26.
GALADIMA A, MURAZA O. Advances in catalyst design for the conversion of methane to aromatics: A critical review [J]. Catalysis Surveys from Asia, 2019, 23(3): 149-170.
DING C M, AI G G, ZHANG K, et al. Coking resistant Ni/ZrO2@SiO2 catalyst for the partial oxidation of methane to synthesis gas [J]. International Journal of Hydrogen Energy, 2015, 40: 6835-6843.
DINH K T, SULLIVAN M M, NARSIMHAN K, et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites [J]. Journal of the American Chemical Society, 2019, 141: 11641-11650.
GUO J, DING C M, MA Z L, et al. Highly dispersed and stable Pt clusters encapsulated within ZSM-5 with aid of sodium ion for partial oxidation of methane [J]. Fuel, 2021, 289: 119839-119846.
阮鹏, 杨润农, 林梓荣, 等. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846.
RUAN P, YANG R N, LIN Z R, et al. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846.
王润平, 毛树红, 段秀琴, 等. 不同载体Ni基负载型催化剂对甲烷部分氧化制合成气催化行为研究[J]. 燃料化学学报, 2015, 43(2): 228-234.
WANG R P, MAO S H, DUAN X Q, et al. Study on the catalytic behavior of different supported Ni-based catalysts for partial oxidation of methane to syngas [J]. Journal of Fuel Chemistry, 2015, 43(2): 228-234.
丁传敏, 马自立, 李宇峰, 等. Ni@ZSM-5催化剂的制备及其甲烷部分氧化反应性能的研究[J].天然气化工—C1化学与化工, 2020, 45(6): 1-6.
DING C M, MA Z L, LI Y F, et al. Preparation of Ni@ZSM-5 catalyst and its performance for partial oxidation of methane [J]. Natural Gas and Chemical Industry, 2020, 45(6): 1-6.
DE-ROGATIS L, CARGNELLO M, GOMBAC V, et al. Embedded phases: A way to active and stable catalysts [J]. ChemSusChem, 2010, 3(1): 24-42.
李雷, 李彦兴, 姚瑶, 等. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10):1681-1690.
LI L, LI Y X, YAO Y, et al. Progress and prospective in fabrication and application of core-shell structured nanomaterials in catalytic chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.
LI L, HE S C, SONG Y Y, et al. Fine-tunable Ni@porous silica core-shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas [J]. Journal of Catalysis, 2012, 288: 54-64.
WANG C Z, JIE X Y, QIU Y, et al. The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane [J]. Applied Catalysis B: Environmental, 2019, 259: 118019-118029.
LI Z W, MO L Y, KATHIRASER Y, et al. Yolk-satellite-shell structured Ni-yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction [J]. ACS Catalysis, 2014, 4(5): 1526-1536.
WANG F G, HAN B L, ZHANG L J, et al. CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon [J]. Applied Catalysis B: Environmental, 2018, 235: 26-35.
LI L, YAO Y, SUN B, et al. Highly active and stable lanthanum-doped core-shell structured Ni@SiO2 catalysts for the partial oxidation of methane to syngas [J]. ChemCatChem, 2013, 5(12): 3781-3787.
HAN K H, XU S Y, WANG Y, et al. Confining Ni and ceria in silica shell as synergistic multifunctional catalyst for methane dry reforming reaction [J]. Journal of Power Sources, 2021, 506: 230232-230241.
DAS S, ASHOK J, BIAN Z, et al. Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights [J]. Applied Catalysis B: Environmental, 2018, 230: 220-236.
LIN S X, WANG J, MI Y Y, et al. Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming [J]. Chinese Journal of Catalysis, 2021, 42(10): 1808-1820.
BABAKOUHI R, ALAVI S M, REZAEI M, et al. Combined CO2 reforming and partial oxidation of methane over mesoporous nanostructured Ni/M-Al2O3 catalyst: Effect of various support promoters and nickel loadings [J]. Journal of CO2 Utilization, 2023, 70: 102427-102439.
SCARABELLO A, DALLE-NOGARE D, CANU P, et al. Partial oxidation of methane on Rh/ZrO2 and Rh/Ce-ZrO2 on monoliths: Catalyst restructuring at reaction conditions [J]. Applied Catalysis B: Environmental, 2015, 174-175:308-322.
YANG H, AN Z M, XU Y J, et al. Oscillatory behavior of Ni/TiO2 catalyst during partial oxidation of methane: Understanding the role of strong metal-support interaction[J]. Molecular Catalysis, 2023, 547: 113374-113384.
KARELOVIC A, GARCÍA X, WOJCIESZAK R, et al. Insight on the promoting effect of Zr and Ti on the catalytic properties of Rh/SiO2 for partial oxidation of methane [J]. Applied Catalysis A: General, 2010, 384(1/2): 220-229.
PEDRERO C M, CARRAZÁN S G, RUIZ P. Preliminary results on the role of the deposition of small amounts of ZrO2 on Al2O3 support on the partial oxidation of methane and ethane over Rh and Ni supported catalysts [J]. Catalysis Today, 2021, 363: 111-121.
MATEOS-PEDRERO C, CELLIER C, RUIZ P. Rh/Ti-SiO2 catalysts prepared by organic grafting: A novel class of catalysts towards hydrogen production by partial oxidation of methane [J]. Catalysis today, 2006, 117(1/2/3): 362-368.
GUTIÉRREZ O Y, FUENTES G A, SALCEDO C, et al. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts [J]. Catalysis Today, 2006, 116(4): 485-497.
COSTA C A, LEITE C A, GALEMBECK F. Size dependence of Stöber silica nanoparticle microchemistry [J]. The Journal of Physical Chemistry B, 2003, 107(20):4747-55.
LU Y, YIN Y, LI Z Y, et al. Synthesis and self-assembly of Au@SiO2 core-shell colloids [J]. Nano Letters, 2002, 2(7):785-788.
LIN K J, CHEN L J, PRASAD M R, et al. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@MCM-41 [J]. Advanced Materials, 2004, 16(20): 1845-1849.
JOO S H, PARK J Y, TSUNG C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J]. Nature Materials, 2009, 8(2):126-131.
LI Z W, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: Influence of Ni precursors on structure, sintering, and carbon resistance [J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922.
LI Y X, LIU S Q, YAO L H, et al. Core-shell structured iron nanoparticles for the generation of COx-free hydrogen via ammonia decomposition [J]. Catalysis Communications, 2010, 11(5): 368-372.
FORMAN A J, PARK J N, TANG W, et al. Silica-encapsulated Pd nanoparticles as a regenerable and sintering-resistant catalyst [J]. ChemCatChem, 2010, 2(10):1318-1324.
XU L L, SONG H L, CHOU L J, et al. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides [J]. Applied Catalysis B: Environmental, 2011, 108-109: 177-190.
ZENG B, HOU B, JIA L T, et al. The intrinsic effects of shell thickness on the Fischer-Tropsch synthesis over core-shell structured catalysts [J]. Catalysis Science & Technology, 2013, 3(12): 3250-3255.
LIZAMA L Y, KLIMOVA T E. SBA-15 modified with Al, Ti, or Zr as supports for highly active NiW catalysts for HDS [J]. Journal of Materials Science, 2009, 44(24): 6617-6628.
LI L, LU P, YAO Y, et al. Silica-encapsulated bimetallic Co-Ni nanoparticles as novel catalysts for partial oxidation of methane to syngas [J]. Catalysis Communications, 2012, 26: 72-77.
CLARIDGE J B, GREEN M L H, TSANG S C, et al. A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas [J]. Catalysis Letters, 1993, 22: 299-305.
LI Y, ZHANG B C, XIE X W, et al. Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers [J]. Journal of Catalysis, 2006, 238(2): 412-424.
LI L, SUN L, CANG H, et al. Silica-assisted mesoporous Co@carbon nanoplates derived from ZIF-67 crystals and their enhanced catalytic activity [J]. Journal of Solid State Chemistry, 2018, 267: 134-139.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution