浏览全部资源
扫码关注微信
太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
Published:25 August 2024,
Received:02 January 2024,
Revised:20 February 2024,
移动端阅览
吴彬,姚如伟,牛琴琴等.二氧化碳催化加氢制高级醇催化剂研究进展[J].低碳化学与化工,2024,49(08):89-99.
WU Bin,YAO Ruwei,NIU Qinqin,et al.Research progress on catalysts for catalytic hydrogenation of carbon dioxide to higher alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):89-99.
吴彬,姚如伟,牛琴琴等.二氧化碳催化加氢制高级醇催化剂研究进展[J].低碳化学与化工,2024,49(08):89-99. DOI: 10.12434/j.issn.2097-2547.20240003.
WU Bin,YAO Ruwei,NIU Qinqin,et al.Research progress on catalysts for catalytic hydrogenation of carbon dioxide to higher alcohols[J].Low-carbon Chemistry and Chemical Engineering,2024,49(08):89-99. DOI: 10.12434/j.issn.2097-2547.20240003.
二氧化碳(CO
2
)催化加氢制高级醇是实现CO
2
高价值利用及缓解温室效应的重要途径之一。综述了近年来CO
2
催化加氢制高级醇的研究进展。首先从热力学角度分析了CO
2
催化加氢制高级醇的有利反应条件及催化剂要求。然后重点介绍了适用于该领域的不同类型的催化剂(贵金属基、铜基、钴基和钼基催化剂)的研究情况。最后基于关键中间体及主反应路径,总结了CO
2
催化加氢制C
2+
醇合成机理。通过总结与分析,指出了目前CO
2
催化加氢制高级醇研究面临的主要挑战,并对该领域未来的研究方向进行了展望。
Catalytic hydrogenation of carbon dioxide (CO
2
) to higher alcohols is one of the important ways to realize the high value utilization of CO
2
and mitigate the greenhouse effect. The research progress on catalytic hydrogenation of CO
2
to higher alcohols in recent years was reviewed. Firstly
the favorable reaction conditions and catalyst requirements for catalytic hydrogenation of CO
2
to higher alcohols were analyzed from the thermodynamic point of view. Then the researches of different types of catalysts (precious metal based
copper based
cobalt and molybdenum based catalysts) applicable to the field were introduced. Finally
based on the key intermediates and main reaction pathways
the synthesis mechanisms of catalytic hydrogenation of CO
2
to higher alcohols were summarized. Through summary and analysis
the main challenges in the research of catalytic hydrogenation of CO
2
to higher alcohols were pointed out
and the future research direction in the field was prospected.
二氧化碳催化加氢高级醇催化剂合成机理
carbon dioxidecatalytic hydrogenationhigher alcoholscatalystssynthesis mechanisms
RA E C, KIM K Y, KIM E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives [J]. ACS Catalysis, 2020, 10(19): 11318-11345.
杨晨, 温月丽, 王斌, 等. 前驱体结构及Cu含量对CuFe基催化剂CO2加氢制C2+醇性能的影响[J]. 天然气化工—C1化学与化工, 2022, 47(4): 32-40.
YANG C, WEN Y L, WANG B, et al. Effect of precursor structure and Cu content on performance of CuFe-based catalysts for CO2 hydrogenation to C2+ alcohol [J]. Natural Gas Chemical Industry, 2022, 47(4): 32-40.
TATSUMI T, MURAMATS A, TOMINAGA H O. Alcohol synthesis from CO2/H2 on silica-supported molybdenum cataltsts [J]. Chemistry Letters, 1985, 14(5): 593-594.
崔国庆, 胡溢玚, 娄颖洁, 等. CO2加氢制醇类催化剂的设计制备及性能研究进展[J]. 化学学报, 2023, 81(8): 1081-1100.
CUI G Q, HU Y Y, LOU Y J, et al. Research progress on the design, preparation and properties of catalysts for CO2 hydrogenation to alcohols [J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100.
GAO P, ZHANG L N, LI S G, et al. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels [J]. ACS Central Science, 2020, 6(10): 1657-1670.
XU D, WANG Y Q, DING M Y, et al. Advances in higher alcohol synthesis from CO2 hydrogenation [J]. Chem, 2021, 7(4): 849-881.
ZENG F, MEBRAHTU C, XI X, et al. Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives [J]. Applied Catalysis B: Environmental, 2021, 291: 120073.
HE Y, MÜLLER F H, PALKOVITS R, et al. Tandem catalysis for CO2 conversion to higher alcohols: A review [J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123663.
ZHANG S N, WU Z X, LIU X F, et al. A short review of recent advances in direct CO2 hydrogenation to alcohols [J]. Topics in Catalysis, 2021, 64(5): 371-394.
YE X, YANG C Y, PAN X L, et al. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst [J]. Journal of the American Chemical Society, 2020, 142(45): 19001-19005.
YANG N Y, MEDFORD A J, LIU X Y, et al. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production [J]. Journal of the American Chemical Society, 2016, 138(11): 3705-3714.
INOUE T, IIZUKA T, TANABE K. Hydrogenation of carbon dioxide and carbon monoxide over supported rhodium catalysts under 10 bar pressure [J]. Applied Catalysis, 1989, 46(1): 1-9.
WANG C T, ZHANG J, QIN G Q, et al. Direct conversion of syngas to ethanol within zeolite crystals [J]. Chem, 2020, 6(3): 646-657.
GU T J, WANG B C, CHEN S Y, et al. Automated generation and analysis of the complex catalytic reaction network of ethanol synthesis from syngas on Rh(111) [J]. ACS Catalysis, 2020, 10(11): 6346-6355.
ZHANG F Y, ZHOU W, XIONG X W, et al. Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1 [J]. The Journal of Physical Chemistry C, 2021, 125(44): 24429-24439.
WANG G S, LUO R, YANG C S, et al. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts [J]. Science China Chemistry, 2019, 62(12): 1710-1719.
GORYACHEV A, PUSTOVARENKO A, SHTERK G, et al. A multi-parametric catalyst screening for CO2 hydrogenation to ethanol [J]. ChemCatChem, 2021, 13(14): 3324-3332.
YANG C, MU R, WANG G, et al. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation [J]. Chemical Science, 2019, 10(11): 3161-3167.
WITOON T, NUMPILAI T, NIJPANICH S, et al. Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalysts [J]. Chemical Engineering Journal, 2022, 431: 133211.
LIU B, OUYANG B, ZHANG Y H, et al. Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO2 hydrogenation for higher alcohol synthesis [J]. Journal of Catalysis, 2018, 366: 91-97.
LOU Y, JIANG F, ZHU W, et al. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol [J]. Applied Catalysis B: Environmental, 2021, 291: 120122.
CHEN J, ZHA Y J, LIU B, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites [J]. ACS Catalysis, 2023, 13(10): 7110-7121.
CAPARRÓS F J, SOLER L, ROSSELL M D, et al. Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst [J]. ChemCatChem, 2018, 10(11): 2365-2369.
HE Z H, QIAN Q L, MA J, et al. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions [J]. Angewandte Chemie International Edition, 2016, 55(2): 737-741.
WANG D, BI Q Y, YIN G H, et al. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts [J]. Chemical Communications, 2016, 52(99): 14226-14229.
BAI S X, SHAO Q, WANG P, et al. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles [J]. Journal of the American Chemical Society, 2017, 139(20): 6827-6830.
霍凯旋, 王阳, 吴明铂. CO2加氢制甲醇用Cu基催化剂研究进展[J]. 低碳化学与化工, 2023, 48(3): 22-31.
HUO G X, WANG Y, WU M B. Research progress on Cu-based catalysts for CO2 hydrogenation to methanol [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 22-31.
WANG Y, WANG X Y, YAN Z Q, et al. Activation reconstructing CuZnO/SiO2 catalyst for CO2 hydrogenation [J]. Journal of Catalysis, 2022, 412: 10-20.
邱正璞, 邢爱华, 张凡, 等. Cu基甲醇合成催化剂在两种模拟工业合成气中反应的结构变化及稳定性研究[J]. 低碳化学与化工, 2023, 48(6): 37-42.
QIU Z P, XING A H, ZHANG F, et al. Study on structure change and stability of Cu-based methanol synthesis catalysts in simulated reaction of two industrial syngas [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 37-42.
ZHAO H B, YU R F, MA S C, et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation [J]. Nature Catalysis, 2022, 5(9): 818-831.
TAKAGAWA M, OKAMOTO A, FUJIMURA H, et al. Ethanol synthesis from carbon dioxide and hydrogen [J]. Studies in Surface Science and Catalysis, 1998, 114: 525-528.
LI S G, GUO H J, ZHANG H R, et al. The reverse water-gas shift reaction and the synthesis of mixed alcohols over K/Cu-Zn catalyst from CO2 hydrogenation [J]. Advanced Materials Research, 2013, 772: 275-280.
XU D, DING M Y, HONG X L, et al. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation [J]. ACS Catalysis, 2020, 10(24): 14516-14526.
XU D, DING M Y, HONG X L, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst [J]. ACS Catalysis, 2020, 10(9): 5250-5260.
WANG Y Q, ZHANG X X, HONG X L, et al. Sulfate-promoted higher alcohol synthesis from CO2 hydrogenation [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8980-8987.
LI S G, GUO H J, LUO C R, et al. Effect of iron promoter on structure and performance of K/Cu-Zn catalyst for higher alcohols synthesis from CO2 hydrogenation [J]. Catalysis Letters, 2013, 143(4): 345-355.
DING L P, SHI T T, GU J, et al. CO2 hydrogenation to ethanol over Cu@Na-Beta [J]. Chem, 2020, 6(10): 2673-2689.
AN B, LI Z, SONG Y, et al. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol [J]. Nature Catalysis, 2019, 2(8): 709-717.
GUO S X, LI Z S, YIN R, et al. Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas [J]. ACS Catalysis, 2023, 13(21): 14404-14414.
AN K, ZHANG S R, WANG J M, et al. A highly selective catalyst of Co/La4Ga2O9 for CO2 hydrogenation to ethanol [J]. Journal of Energy Chemistry, 2021, 56: 486-495.
OKABE K, YAMADA H, HANAOKA T, et al. CO2 hydrogenation to alcohols over highly dispersed Co/SiO2 catalysts derived from acetate [J]. Chemistry Letters, 2001, 30(9): 904-905.
田园, 娄舒洁, 孟闪茹, 等. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876.
TIAN Y, LOU S J, MENG S R, et al. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876.
LIAN Y, FANG T F, ZHANG Y, et al. Hydrogenation of CO2 to alcohol species over Co@Co3O4/C-N catalysts [J]. Journal of Catalysis, 2019, 379: 46-51.
WANG L X, WANG L, ZHANG J, et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts [J]. Angewandte Chemie International Edition, 2018, 57(21): 6104-6108.
YANG C, LIU S, WANG Y, et al. The interplay between structure and product selectivity of CO2 hydrogenation [J]. Angewandte Chemie International Edition, 2019, 58(33): 11242-11247.
ZHANG S N, LIU X F, LUO H, et al. Morphological modulation of Co2C by surface-adsorbed species for highly effective low-temperature CO2 reduction [J]. ACS Catalysis, 2022, 12(14): 8544-8557.
PEI Y P, LIU J X, ZHAO Y H, et al. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface [J]. ACS Catalysis, 2015, 5(6): 3620-3624.
GNANAMANI M K, JACOBS G, KEOGH R A, et al. Fischer-Tropsch synthesis: Effect of pretreatment conditions of cobalt on activity and selectivity for hydrogenation of carbon dioxide [J]. Applied Catalysis A: General, 2015, 499: 39-46.
ISHIDA T, YANAGIHARA T, LIU X H, et al. Synthesis of higher alcohols by Fischer-Tropsch synthesis over alkali metal-modified cobalt catalysts [J]. Applied Catalysis A: General, 2013, 458: 145-154.
ZHANG S N, WU Z X, LIU X F, et al. Tuning the interaction between Na and Co2C to promote selective CO2 hydrogenation to ethanol [J]. Applied Catalysis B: Environmental, 2021, 293: 120207.
LI L S, LIN T J, LI X, et al. Control of Co0/Co2C dual active sites for higher alcohols synthesis from syngas [J]. Applied Catalysis A: General, 2020, 602: 117704.
AN K, ZHANG S R, WANG H, et al. Co0-Coδ+ active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis [J]. Chemical Engineering Journal, 2022, 433: 134606.
ZHANG S N, LIU X F, SHAO Z L, et al. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism [J]. Journal of Catalysis, 2020, 382: 86-96.
史雪敏, 杨绪壮, 白凤华, 等. 合成气制低碳醇钼基催化剂助剂的研究进展[J]. 化工进展, 2010, 29(12): 2291-2297.
SHI X M, YANG X Z, BAI F H, et al. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2291-2297.
ZAMAN S F, SMITH K J. Synthesis gas conversion over a Rh-K-MoP/SiO2 catalyst [J]. Catalysis Today, 2011, 171(1): 266-274.
XI X Y, ZENG F, CAO H T, et al. Enhanced C3+ alcohol synthesis from syngas using KCoMoSx catalysts: Effect of the Co-Mo ratio on catalyst performance [J]. Applied Catalysis B: Environmental, 2020, 272: 118950.
WANG N, FANG K G, LIN M G, et al. Synthesis of higher alcohols from syngas over Fe/K/β-Mo2C catalyst [J]. Catalysis Letters, 2010, 136(1): 9-13.
CALAFAT A, VIVAS F, BRITO J N L. Effects of phase composition and of potassium promotion on cobalt molybdate catalysts for the synthesis of alcohols from CO2 and H2 [J]. Applied Catalysis A: General, 1998, 172(2): 217-224.
LIU S, ZHOU H B, SONG Q Y, et al. Synthesis of higher alcohols from CO2 hydrogenation over Mo-Co-K sulfide-based catalysts [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 18-26.
LIU S, ZHOU H B, ZHANG L, et al. Activated carbon-supported Mo-Co-K sulfide catalysts for synthesizing higher alcohols from CO2 [J]. Chemical Engineering & Technology, 2019, 42(5): 962-970.
CHEN Y, CHOI S, THOMPSON L T. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts [J]. Journal of Catalysis, 2016, 343: 147-156.
SHENG Y, POLYNSKI M V, ESWARAN M K, et al. A review of mechanistic insights into CO2 reduction to higher alcohols for rational catalyst design [J]. Applied Catalysis B: Environmental, 2024, 343: 123550.
ZHENG K, LI Y F, LIU B, et al. Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol [J]. Angewandte Chemie International Edition, 2022, 61(44): e202210991.
LIU T K, XU D, SONG M Y, et al. K-ZrO2 interfaces boost CO2 hydrogenation to higher alcohols [J]. ACS Catalysis, 2023, 13(7): 4667-4674.
ZHANG S N, HUANG C J, SHAO Z L, et al. Revealing and regulating the complex reaction mechanism of CO2 hydrogenation to higher alcohols on multifunctional tandem catalysts [J]. ACS Catalysis, 2023, 13(5): 3055-3065.
WANG Y, WANG K Z, ZHANG B Z, et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts [J]. ACS Catalysis, 2021, 11(18): 11742-11753.
WANG L X, HE S X, WANG L, et al. Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol [J]. ACS Catalysis, 2019, 9(12): 11335-11340.
WANG X L, RAMíREZ P J, LIAO W J, et al. Cesium-induced active sites for C—C coupling and ethanol synthesis from CO2 hydrogenation on Cu/ZnO(0001) surfaces [J]. Journal of the American Chemical Society, 2021, 143(33): 13103-13112.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution