浏览全部资源
扫码关注微信
1.中国矿业大学 安全工程学院,江苏 徐州 221116
2.深圳市投资控股有限公司,广东 深圳 518000
3.黑龙江科技大学 安全工程学院,黑龙江 哈尔滨 150022
4.深圳市城市公共安全技术研究院,广东 深圳 518046
Published:25 October 2024,
Received:31 December 2023,
Revised:13 March 2024,
移动端阅览
王世海,吴强,李忠辉等.驱动压力影响下不同体系煤层气水合分离实验[J].低碳化学与化工,2024,49(10):136-142.
WANG Shihai,WU Qiang,LI Zhonghui,et al.Experimental study on coalbed methane hydrate separation in different systems under driving pressures[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):136-142.
王世海,吴强,李忠辉等.驱动压力影响下不同体系煤层气水合分离实验[J].低碳化学与化工,2024,49(10):136-142. DOI: 10.12434/j.issn.2097-2547.20230433.
WANG Shihai,WU Qiang,LI Zhonghui,et al.Experimental study on coalbed methane hydrate separation in different systems under driving pressures[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):136-142. DOI: 10.12434/j.issn.2097-2547.20230433.
煤层气(CBM)分离提纯对保障矿井安全生产、实现双碳目标等具有重要意义。基于水合物法分离技术,在十二烷基硫酸钠(SDS)、油水乳液和纯水体系中施加4种驱动压力(1 MPa、2 MPa、3 MPa和4 MPa),开展了高浓度煤层气(甲烷体积分数60%)水合分离实验。结果表明,3种体系中煤层气水合物的生长速率均随驱动压力的增大而持续增大,添加SDS和油水乳液能进一步增大水合物生长速率。不同驱动压力下,煤层气经纯水体系、SDS体系和油水体系分离后,甲烷回收率分别为10.02%~11.75%、31.00%~43.36%和21.68%~24.36%,其中SDS体系较纯水体系甲烷回收率增大了3~4倍,油水体系则增大了约2倍。3种体系中甲烷回收率均随驱动压力增大而增大,但驱动压力为3~4 MPa时,SDS和油水乳液体系的分离因子呈下降趋势,分离难度变大,可见3 MPa为最佳驱动压力,此时煤层气经SDS和油水乳液体系提纯后,甲烷体积分数分别达到81.13%和82.32%。
The separation and purification of coalbed methane (CBM) are crucial for ensuring safe production in mines and achieving carbon neutrality goals. Using hydrate separation technology
experiments were conducted to separate high-concentration CBM (with methane volume fraction of 60%) in sodium dodecyl sulfate (SDS)
oil-water emulsion and pure water systems under four different driving pressures (1 MPa
2 MPa
3 MPa and 4 MPa). The results indicate that the growth rate of CBM hydrate increases continuously with the driving pressure in all three systems. The addition of SDS and oil-water emulsion further increases the hydrate growth rate. Under different driving pressures
the methane recovery rates after separation in pure water
SDS and oil-water systems are 10.02% to 11.75%
31.00% to 43.36% and 21.68% to 24.36%
respectively. Compared to the pure water system
the methane recovery rate is 3 to 4 times higher in the SDS system and approximately 2 times higher in the oil-water emulsion system. The methane recovery rate increase with the driving pressure in all three systems. However
the separation factors of SDS and oil-water emulsion systems decrease at driving pressures of 3 to 4 MPa
indicating increased separation difficulty. Therefore
3 MPa is identified as the optimal driving pressure. At this pressure
the methane volume fraction after purification in the SDS and oil-water emulsion systems reach 81.13% and 82.32%
respectively.
煤层气水合物水合分离驱动压力十二烷基硫酸钠油水乳液
coalbed methane hydratehydration separationdriving pressuresodium dodecyl sulfateoil-water emulsion
KRZYSZTOF W. Harnessing methane emissions from coal mining [J]. Process Safety and Environmental Protection, 2008, 86(5): 315-320.
黄中伟, 李国富, 杨容月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238.
HUANG Z W, Ll G F, YANG R Y, et al. Review and development trends of coalbed methane exploitation technology in China [J]. Journal of China Coal Society, 2022, 47(9): 3212-3238.
孙海涛, 舒龙勇, 姜在炳, 等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术, 2022, 50(12): 1-13.
SUN H T, SHU L Y, JIANG Z B, et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas [J]. Coal Science and Technology, 2022, 50(12): 1-13.
刘树森, 郭旋, 任军. 我国煤层气综合利用现状[J]. 现代化工, 2018, 38(3): 4-8.
LIU S S, GUO X, REN J. Comprehensive utilization status of coalbed methane in China [J]. Modern Chemical Industry, 2018, 38(3): 4-8.
杨颖, 曲冬蕾, 李平, 等. 低浓度煤层气吸附浓缩技术研究与发展[J]. 化工学报, 2018, 69(11): 4518-4529.
YANG Y, QU D L, LI P, et al.Research and development on enrichment of low concentration coal mine methane by adsorption technology [J]. Journal of Chemical Industry and Engineering, 2018, 69(11): 30-41.
段国栋, 侯鹏, 窦利珍, 等. 含氧煤层气脱氧技术研究进展及评述[J]. 天然气化工—C1化学与化工, 2019, 44(5): 123-130.
DUAN G D, HOU P, DOU L Z, et al. Research progress in deoxidation technology of oxygen-containing coalbed methane[J]. Natural Gas Chemical Industry, 2019, 44(5): 123-130.
邵伟强, 梁海峰, 张锡彦, 等. 水合物法提纯低浓度煤层气的研究进展[J]. 化工进展, 2021, 40(6): 3143-3150.
SHAO W Q, LIANG H F, ZHANG X Y, et al. Research progress of purification of low-concentration coal-bed methane via hydrate method [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3143-3150.
王兰云, 谢辉龙, 卢晓冉, 等. 水合物法分离气体的促进剂及促进机理研究进展[J]. 工程科学学报, 2021, 43(1): 33-46.
WANG L Y, XIE H L, LU X R, et al. Research progress of promoters and promoting mechanisms for hydrate-based gas separation [J]. Chinese Journal of Engineering, 2021, 43(1): 33-46.
HAPPEL J, HNATOW M A, MEYER H. The study of separation of nitrogen from methane by hydrate formation using a novel apparatus [J]. Annals of the New York Academy of Sciences-Paper Edition, 1994, 715: 412-424.
吕秋楠, 李小森, 李刚, 等. 水合物法分离低浓度煤层气中的甲烷[J]. 过程工程学报, 2019, 19(6): 1129-1134.
LV Q N, LI X S, LI G, et al. Separation of methane from low concentration coal bed methane by hydrate-based process [J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1129-1134.
吴强, 王世海, 张保勇, 等. THF对高浓度CH4瓦斯水合分离效果影响实验[J]. 煤炭学报, 2016, 41(5): 1158-1163.
WU Q, WANG S H, ZHANG B Y, et al. Experimental for the influence of THF on the hydrate separation effect of high concentration CH4 gas [J]. Journal of China Coal Society, 2016, 41(5): 1158-1163.
李文涛, 郭博婷, 赵建忠. 煤层气在多孔介质填充管线反应器中的水合实验研究[J]. 煤炭学报, 2016, 41(4): 871-875.
LI W T, GUO B T, ZHAO J Z. Experiment study on CBM hydrates formation in tubular reactor stuff with porous medium [J]. Journal of China Coal Society, 2016, 41(4): 871-875.
钟栋梁, 何双毅, 严瑾, 等. 低甲烷浓度煤层气的水合物法提纯实验[J]. 天然气工业, 2014, 34(8): 123-128.
ZHONG D L, HE S Y, YAN J, et al. An experimental study of using hydrate formation to enhance the methane recovery of low-concentration CBM [J]. Natural Gas Industry, 2014, 34(8): 123-128.
SUN Q, ZHAO Y Y, LIU A X, et al. Continuous separation of CH4/N2 mixture via hydrates formation in the presence of TBAB [J]. Chemical Engineering and Processing: Process Intensification, 2015, 95: 284-288.
ZHAO J Z, TIAN Y Q, ZHAO Y S. Separation of methane from coal bed gas via hydrate formation in the presence of tetrahydrofuran and sodium dodecyl sulfate [J]. Chemistry and Technology of Fuels and Oils, 2013, 49(3): 251-258.
张保勇, 吴强. 十二烷基硫酸钠对瓦斯水合物生长速率的影响[J]. 煤炭学报, 2010, 35(1): 89-92.
ZHANG B Y, WU Q. Effect of sodium dodecyl sulfate on formation rate of coal mine gas hydrate [J]. Journal of China Coal Society, 2010, 35(1): 89-92.
吴强, 王世海, 张保勇, 等. 油水乳液强化分离矿井瓦斯的特性[J]. 煤炭学报, 2016, 41(9): 2223-2229.
WU Q, WANG S H, ZHANG B Y, et al. Characteristics of enhanced separation of mine gas with oil-water emulsion [J].Journal of China Coal Society, 2016, 41(9): 2223-2229.
马庆兰, 陈光进, 孙长宇, 等. 气-液-液-水合物多相平衡闪蒸的新算法[J]. 化工学报, 2005, 56(9): 1599-1605.
MA Q L, CHEN G J, SUN C Y, et al. New algorithm of vapor-liquid-liquid-hydrate multi-phase equilibrium flash calculation [J]. CIESC Journal, 2005, 56(9): 1599-1604.
LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide [J]. Journal of Hazardous Materials, 2007, 149(3): 625-629.
张保勇, 尹百元, 吴强, 等. 驱动力对瓦斯水合分离效果影响[J]. 煤炭学报, 2017, 42(S1): 166-171.
ZHANG B Y, YIN B Y, WU Q, et al. Influence of driving force to gas hydration separation effect [J]. Journal of China Coal Society, 2017, 42(S1): 166-171.
丁家祥, 史伶俐, 申小冬, 等. SDS对甲烷水合物生成动力学和微观结构的影响[J]. 化工学报, 2017, 68(12): 4802-4808.
DING J X, SHI L L, SHEN X D, et al. SDS effect on formation kinetics and microstructure of methane hydrate [J]. CIESC Journal, 2017, 68(12): 4802-4808.
KOBUS A, KUPPINGER F F, MEIER R, et al. Improvement of conventional unit operations by hybrid separation technologies: A review of industrial applications [J]. Chemie Ingenieur Technik, 2001, 73(6): 714-719.
杜建伟, 梁德青, 戴兴学, 等. Span80促进甲烷水合物生成动力学研究[J]. 工程热物理学报, 2011, 32(2): 197-200.
DU J W, LIANG D Q, DAI X X, et al. Investigation on span 80 promoting methane hydrate formation kinetics [J]. Journal of Engineering Thermophysics, 2011, 32(2): 197-200.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution