浏览全部资源
扫码关注微信
中船(邯郸)派瑞氢能科技有限公司,河北 邯郸 056010
Published:25 September 2024,
Received:30 December 2023,
Revised:30 January 2024,
移动端阅览
张安然,李黎明,马颖等.交联型聚(联苯-哌啶)阴离子交换膜制备与电解槽性能研究[J].低碳化学与化工,2024,49(09):82-87.
ZHANG Anran,LI Liming,MA Ying,et al.Study on preparation of cross-linked poly (biphenyl-piperidine) anion exchange membrane and electrolyzer performance[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):82-87.
张安然,李黎明,马颖等.交联型聚(联苯-哌啶)阴离子交换膜制备与电解槽性能研究[J].低碳化学与化工,2024,49(09):82-87. DOI: 10.12434/j.issn.2097-2547.20230431.
ZHANG Anran,LI Liming,MA Ying,et al.Study on preparation of cross-linked poly (biphenyl-piperidine) anion exchange membrane and electrolyzer performance[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):82-87. DOI: 10.12434/j.issn.2097-2547.20230431.
为制备出同时具备高电导率和高稳定性的阴离子交换膜(AEM),以1
6-二溴己烷为交联剂,采用浇铸法制备了不同交联度的交联型聚(联苯-哌啶)AEM(PBP-Pip-
x
%膜,
x
代表交联度,取值分别为5、10和15)。分别采用
1
H NMR和AFM对PBP-Pip-
x
%膜的结构和形貌等进行了表征,并以未交联的聚(联苯-哌啶)AEM(PBP-Pip膜)作为对照组,研究了PBP-Pip-
x
%膜的性能。结果表明,PBP-Pip-15%膜具有更好的微相分离结构,其电导率(99.14 mS/cm)较PBP-Pip膜的电导率(49.89 mS/cm)明显提高。PBP-Pip-15%膜表现出较好的碱稳定性,在1 mol/L KOH溶液中于80 ℃浸泡300 h后,其电导率为37.50 mS/cm,电导率保留率为79.73%。在设定条件(温度为80 ℃、1 mol/L KOH溶液中和小室电压为2.0 V)下,PBP-Pip-15%膜的电流密度为0.5 A/cm
2
,并且在100 h内稳定性未发生明显改变。
In order to prepare anion exchange membrane (AEM) with high conductivity and high stability
1
6-dibromohexane was used as crosslinking
agent
and cross-linked poly (biphenyl-piperidine) AEM (PBP-Pip-
x
% membrane
x
represents crosslinking degree and the values of
x
are 5
10 and 15
respectively) with different crosslinking degrees were prepared by casting method. The structures and morphologies of PBP-Pip-
x
% membranes were characterized by
1
H NMR and AFM
respectively
and the properties of PBP-Pip-
x
% membranes were studied by using uncross-linked poly (biphenyl-piperidine) AEM (PBP-Pip membrane) as the control group. The results show that PBP-Pip-15% membrane has better microphase separation structure
and its conductivity (99.14 mS/cm) is significantly higher than that of the PBP-Pip membrane (49.89 mS/cm). PBP-Pip-15% membrane shows good alkali stability
and after soaking in 1 mol/L KOH solution at 80 ℃ for 300 h
the conductivity of PBP-Pip-15% membrane is 37.50 mS/cm and the conductivity retention rate is 79.73%. Under the set up conditions (temperature of 80 ℃
1 mol/L KOH solution and cell voltage of 2.0 V)
the current density of PBP-Pip-15% membrane is 0.5 A/cm
2
and the stability of PBP-Pip-15% membrane does not change significantly within 100 h.
交联结构聚(联苯-哌啶)阴离子交换膜水电解技术
cross-linked structurepoly (biphenyl-piperidine)anion exchange membranewater electrolysis technology
VINCENT I, BESSARABOV D. Low cost hydrogen production by anion exchange membrane electrolysis: A review [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704.
LENG Y J, CHEN G, MENDOZA A J, et al. Solid-state water electrolysis with an alkaline membrane [J]. Journal of the American Chemical Society, 2012, 134(22): 9054-9057.
CHI J, YU H M. Water electrolysis based on renewable energy for hydrogen production [J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
XU L, LI W, YOU Y, et al. Polysulfone and zirconia composite separators for alkaline water electrolysis [J]. Frontiers of Chemical Science and Engineering, 2013, 7: 154-161.
王斌, 宋仁升, 杨国刚, 等. 氢能动力船现场制氢技术的研究综述[J]. 辽宁石油化工大学学报, 2023, 43(6): 22-29.
WANG B, SONG R S, YANG G G, et al. A review of research on hydrogen production technology for hydrogen powered ships [J] Journal of Liaoning University of Petroleum & Chemical Technology, 2023, 43(6): 22-29.
MILLER H A. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions [J]. Sustainable Energy & Fuels, 2020, 4(5): 2114-2133.
BURNAT D, SCHLUPP M, WICHSER A, et al. Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers [J]. Journal of Power Sources, 2015, 291: 163-172.
郭雅婷, 邓甜音, 刘艳莹, 等. 碱性电解水制氢隔膜和阳极材料性能研究[J].综合智慧能源, 2022, 44(5): 64-68.
GUO Y T, DENG T Y, LIU Y Y, et al. Research on the performance of membranes and anode materials in alkaline water electrolysis [J]. Integrated Intelligent Energy, 2022, 44(5): 64-68.
CHAND K, PALADINO O. Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: A review [J]. Arabian Journal of Chemistry, 2023, 16(2): 104451.
PALMAS S, RODRIGUEZ J, MAIS L, et al. Anion exchange membrane: A valuable perspective in emerging technologies of low temperature water electrolysis [J]. Current Opinion in Electrochemistry, 2023, 37: 101178.
MILLER H A. Green hydrogen from anion exchange membrane water electrolysis [J]. Current Opinion in Electrochemistry, 2022, 36: 101122.
HENKENSMEIER D, NAJIBAH M, HARMS C, et al. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis [J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 24001.
LICKERT T, FISCHER S, YOUNG J L, et al. Advances in benchmarking and round robin testing for PEM water electrolysis: Reference protocol and hardware [J]. Applied Energy, 2023, 352: 121898.
MOHANTY A D, TIGNOR S E, KRAUSE J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications [J]. Macromolecules, 2016, 49(9): 3361-3372.
MARINO M G, KREUER K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids [J]. ChemSusChem, 2015, 8(3): 513-523.
ZHU L, PENG X, SHANG S L, et al. High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes [J]. Advanced Functional Materials, 2019, 29(26): 1902059.
OLSSON J S, PHAM T H, JANNASCH P. Tuning poly (arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking [J]. Journal of Membrane Science, 2019, 578: 183-195.
XU Z Q, WILKE V, CHMIELARZ J J, et al. Novel piperidinium-functionalized crosslinked anion exchange membrane with flexible spacers for water electrolysis [J]. Journal of Membrane Science, 2023, 670: 121302.
ZHU Y, DING L, LIANG X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells [J]. Energy & Environmental Science, 2018, 11(12): 3472-3479.
CAIELLI T, FERRARI A R, BONIZZONI S, et al. Synthesis, characterization and water electrolyzer cell tests of poly (biphenyl piperidinium) anion exchange membranes [J]. Journal of Power Sources, 2023, 557: 232532.
OLSSON J S, PHAM T H, JANNASCH P. Poly (arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity [J]. Advanced Functional Materials, 2018, 28(2): 1702758.
LI L, WANG J A, MA L L, et al. Dual-side-chain-grafted poly (phenylene oxide) anion exchange membranes for fuel-cell and electrodialysis applications [J]. ACS Sustainable Chemistry & Engineering, 2021, 9: 8611-8622.
YANG L C, WANG Z Q, WANG F H, et al. Poly (aryl piperidinium) anion exchange membranes with cationic extender sidechain for fuel cells [J]. Journal of Membrane Science, 2022, 653: 120448.
MA L L, QAISRANI N A, HUSSAIN M, et al. Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application [J]. Journal of Membrane Science, 2020, 607: 118190.
HE Y B, GE X L, LIANG X, et al. Anion exchange membranes with branched ionic clusters for fuel cells [J]. Journal of Materials Chemistry A, 2018, 6(14): 5993-5998.
GE Q Q, LIANG X, DING L, et al. Guiding the self-assembly of hyperbranched anion exchange membranes utilized in alkaline fuel cells [J]. Journal of Membrane Science, 2019, 573: 595-601.
RAN J, DING L, CHU C Q, et al. Highly conductive and stabilized side-chain-type anion exchange membranes: Ideal alternatives for alkaline fuel cell applications [J]. Journal of Materials Chemistry A, 2018, 6(35): 17101-17110.
LI D G, MOTZ A R, BAE C, et al. Durability of anion exchange membrane water electrolyzers [J]. Energy & Environmental Science, 2021, 14(6): 3393-3419.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution