浏览全部资源
扫码关注微信
1.辽宁科技大学 辽宁省先进煤焦化重点实验室,辽宁 鞍山 114051
2.中钢集团鞍山热能研究院有限公司,辽宁 鞍山 114044
Published:25 October 2024,
Received:14 December 2023,
Revised:16 January 2024,
移动端阅览
许恒光,田露,戚悦昕等.不同变质程度煤在胶质体阶段的碳结构演变探究[J].低碳化学与化工,2024,49(10):47-55.
XU Hengguang,TIAN Lu,QI Yuexin,et al.Study on carbon structure evolution of coal with different metamorphism degrees in colloidal stage[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):47-55.
许恒光,田露,戚悦昕等.不同变质程度煤在胶质体阶段的碳结构演变探究[J].低碳化学与化工,2024,49(10):47-55. DOI: 10.12434/j.issn.2097-2547.20230405.
XU Hengguang,TIAN Lu,QI Yuexin,et al.Study on carbon structure evolution of coal with different metamorphism degrees in colloidal stage[J].Low-carbon Chemistry and Chemical Engineering,2024,49(10):47-55. DOI: 10.12434/j.issn.2097-2547.20230405.
煤炭清洁高效利用对实现双碳目标具有重要意义。利用自制焦炉对5种炼焦煤(观音堂焦煤、马头焦煤、五沟肥煤、萧县肥煤和兖州西气煤)进行热解成焦,并提取了不同温度段的煤样。结合傅立叶变换红外光谱(FTIR)和X射线衍射(XRD)等表征手段对煤样的碳结构进行了探究。FTIR结果显示,5种原煤的芳香结构以苯环二取代和四取代为主,相对含量均达到50%以上,随着温度升高,5种煤样的苯环二取代相对含量均有不同程度降低,而苯环四取代和五取代相对含量变化则呈现两段性。5种原煤的脂肪结构以甲基和亚甲基为主,随温度升高,观音堂焦煤、马头焦煤、五沟肥煤和萧县肥煤中的亚甲基相对含量分别降低了18.85%、13.75%、16.50%和12.65%,而兖州西气煤的亚甲基相对含量在450 ℃达到最低,其次甲基相对含量在450 ℃后迅速从42.11%降低至22.87%。计算了5种煤样的FTIR结构参数,发现450~550 ℃阶段煤样的芳碳率、芳氢率均明显增加,脂肪支链长度迅速减短。XRD结果显示,随着温度升高,焦煤和肥煤的层间距减小至0.344~0.346 mm,而气煤的层间距只减小了0.007 nm,5种煤样的横向尺寸呈现先减小后增加的趋势,而堆垛高度则呈现增加的趋势。焦煤和肥煤的碳结构参数变化明显,焦煤的芳香度提高至0.82左右,肥煤的提高至0.73左右,而气煤的芳香度仅有0.57。
The clean and efficient utilization of coal is of great significance for achieving the dual carbon goals. Five types of coking coal (Guanyintang coking coal
Matou coking coal
Wugou fat coal
Xiaoxian fat coal and Yanzhouxi gas coal) were pyrolyzed into coke using a self-made coke oven
and coal samples at different temperature ranges were extracted. The carbon structures of coal samples were investigated by combining characterization methods such as Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The FTIR results show that the aromatic structures of the five types of raw coal are mainly benzene ring disubstituted and tetrasubstituted
with relative contents exceeding 50%. As the temperature increases
the relative content change of benzene ring disubstituted in the five types of coal samples decreases to varying degrees
while the relative content of benzene ring tetrasubstituted and pentasubstituted shows a two-stage pattern. The fatty structures of five types of raw coal are mainly composed of methyl and methylene. As the temperature increases
the relative contents of methylene in Guanyintang coking coal
Matou coking coal
Wugou fat coal and Xiaoxian fat coal decrease by 18.85%
13.75%
16.50% and 12.65%
respectively. The relative content of methylene in Yanzhouxi gas coal reaches the lowest at 450 ℃
followed by a rapid decrease in methenyl content from 42.11% to 22.87% after 450 ℃. The FTIR structural parameters of the five coal samples were calculated
and it is found that the aromatic carbon and hydrogen rates of the coal samples significantly increase during the stage from 450 ℃ to 550 ℃
while alkyl chain length rapidly decreases. The XRD results show that as the temperature increases
the interplanar spacings of coking coal and fat coal decrease to 0.344 nm to 0.346 nm
while the interplanar spacing of gas coal only decreases by 0.007 nm. The lateral dimensions of the five coal samples show a trend of first decreasing and then increasing
while stacking heights show an increasing trend. The carbon structure parameters of coking coal and fat coal show significant changes
with the aromaticity of coking coal increasing to around 0.82
fat coal increasing to around 0.73
and gas coal having an aromaticity of only 0.57.
煤热解胶质层傅立叶变换红外光谱X射线衍射碳结构
coal pyrolysiscolloidal layerfourier transform infrared spectroscopyX-ray diffractioncarbon structure
陈从喜, 吴琪, 李政, 等. 2016年中国矿产资源开发利用形势分析[J]. 矿产保护与利用, 2017, 37(5): 1-7.
CHEN C X, WU Q, LI Z, et al. Analysis of the development and utilization situation of mineral resources in China in 2016 [J]. Conservation and Utilization of Mineral Resources, 2017, 37(5): 1-7.
濮洪九. 洁净煤技术产业化与我国能源结构优化[J]. 煤炭学报, 2002, 27(1): 1-5.
PU H J. Industrialization of clean coal technology and optimization of China energy structure [J]. Journal of China Coal Society, 2002, 27(1): 1-5.
LEE S, MAHONEY M, YU J L. Advances in the understanding of the formation and chemistry of the plastic layer during coke-making: A comprehensive review [J]. Fuel, 2020, 263, 116655.
CUI B B, SHEN Y F, GUO J, et al. A study of coking mechanism based on the transformation of coal structure [J]. Fuel, 2022, 328: 125360.
程军, 周俊虎, 刘建忠, 等. 黄陵煤灰自身固硫的微观特性分析[J]. 化工学报, 2004, 55(11): 1853-1858.
CHENG J, ZHOU J H, LIU J Z, et al. Microstructure of self-desulfurization residue of Huangling coal ash in combustion [J]. CIESC Journal, 2004, 55(11): 1853-1858.
EVERSON C R, OKOLO N G, NEOMAGUS W H, et al. X-ray diffraction parameters and reaction rate modeling for gasification and combustion of chars derived from inertinite-rich coals [J]. Fuel, 2013, 109: 148-156.
CHEN X Z, LI M F, ZENG F G. Control of chemical structure on the characteristics of micropore structure in medium-rank coals [J]. Fuel Processing Technology, 2022, 228: 33.
李雪萍, 曾强. 光谱分析在煤结构研究中的进展[J]. 光谱学与光谱分析, 2022, 42(2): 350-357.
LI X P, ZENG Q. Development and progress of spectral analysis in coal structure research [J]. Spectroscopy and Spectral Analysis, 2022, 42(2): 350-357.
CHEN Y X, LEE S, TAHMASEBI A, et al. Chemical structure transformation during the later stage of plastic layers during coking using Synchrotron infrared microspectroscopy technique [J]. Fuel, 2020, 273: 117764.
HU J H, CHEN Y Q, QIAN K Z, et al. Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3 [J]. Fuel Processing Technology, 2017, 159, 178-186.
李美芬, 李晔熙, 邵燕, 等. 伊敏煤热解过程中化学结构演化特征的原位拉曼光谱[J]. 煤炭学报, 2022, 47(12): 4313-4322.
LI M F, LI Y X, SHAO Y, et al. In-situ Raman spectroscopy of chemical structural evolution during pyrolysis for Yinmin coal [J]. Journal of China Coal Society, 2022, 47(12): 4313-4322.
STANGER R, TRAN Q A, XIE W, et al. The use of LDI-TOF imaging mass spectroscopy to study heated coal with a temperature gradient incorporating the plastic layer and semi-coke [J]. Fuel, 2016, 165: 33-40.
LEE S, YU J L, MAHONEY M, et al. A study on the structural transition in the plastic layer during coking of Australian coking coals using synchrotron micro-CT and ATR-FTIR [J]. Fuel, 2018, 233: 877-884.
LEE S, YU J L, MAHONEY M, et al. Study of chemical structure transition in the plastic layers sampled from a pilot-scale coke oven using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer [J]. Fuel, 2019, 242: 277-286.
王镜惠. 中低煤阶煤层气储层孔隙结构分段分形特征[J]. 石油化工高等学校学报, 2019, 32(4): 26-32.
WANG J H. Multi-fractal characteristics of pore structure of coal rock in low and medium rank CBM reservoirs [J]. Journal of Petrochemical Universities, 2019, 32(4): 26-32.
贾慧敏. 高煤阶煤岩孔隙结构分形特征研究[J]. 石油化工高等学校学报, 2016, 29(1): 53-56+85.
JIA H M. The fractal feature of the pore structure for high coal rank coal porous media. journal of petrochemical universities [J]. Journal of Petrochemical Universities, 2016, 29(1): 53-56+85.
HE X Q, LIU X F, NIE B S, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals [J]. Fuel, 2017, 206, 555-563.
胡俊, 程峰, 刘祥春, 等. Py-GC-MS分析神华煤热解产物煤焦油组成[J]. 天然气化工—C1化学与化工, 2020, 45(4): 94-96+116.
HU J, CHENG F, LIU X C, et al. Py-GC-MS analysis of coal tar composition of Shenhua coal pyrolysis product [J]. Natural Gas Chemical Industry, 2020, 45(4): 94-96+116.
葛涛, 李洋, Wang Meng, 等. 高硫肥煤碳结构研究与光谱学表征[J]. 光谱学与光谱分析, 2021, 41(1): 45-51.
GE T, LI Y, WANG M, et al. Study on carbon structure and spectroscopic characterization of high sulfur fertilizer coal [J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 45-51.
李洋, 葛涛, 李芬, 等.山西高阳焦煤碳结构研究与谱学表征[J]. 化学研究与应用, 2020, 32(7): 1194-1199.
LI Y, GE T, LI F, et al. Spectral characterization of coal structure in Shanxi Gaoyangcoking coal [J]. Chemical Research and Application, 2020, 32(7): 1194-1199.
徐靖, 王雪, 张代林, 等. 煤与废轮胎共热解行为及热解焦炭微晶结构研究[J]. 煤炭转化, 2022, 45(5): 53-62.
XU J, WANG X, ZHAMG D L, et al. Study on co-pyrolysis behavior of coal and waste tires and microcrystalline structure of pyrolytic char [J]. Coal Conversion, 2022, 45(5): 53-62.
LI X, QIN Z H, BU L H, et al. Structural analysis of functional group and mechanism investigation of caking property of coking coal [J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 385-393.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution