浏览全部资源
扫码关注微信
1.太原理工大学 化学工程与技术学院,山西 太原 030024
2.中国科学院 山西煤炭化学研究所,山西 太原 030001
Published:25 July 2024,
Received:28 November 2023,
Revised:25 December 2023,
扫 描 看 全 文
范长帅,丁传敏,宋清文等.焙烧气氛对棒状CeO2催化CO2和甲醇直接合成DMC的影响[J].低碳化学与化工,2024,49(07):104-110.
FAN Changshuai,DING Chuanmin,SONG Qingwen,et al.Effects of calcination atmospheres on direct synthesis of DMC from CO2 and methanol catalyzed by rod-shaped CeO2[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):104-110.
范长帅,丁传敏,宋清文等.焙烧气氛对棒状CeO2催化CO2和甲醇直接合成DMC的影响[J].低碳化学与化工,2024,49(07):104-110. DOI: 10.12434/j.issn.2097-2547.20230391.
FAN Changshuai,DING Chuanmin,SONG Qingwen,et al.Effects of calcination atmospheres on direct synthesis of DMC from CO2 and methanol catalyzed by rod-shaped CeO2[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):104-110. DOI: 10.12434/j.issn.2097-2547.20230391.
二氧化碳(CO
2
)和甲醇(MeOH)直接合成碳酸二甲酯(DMC)是一条符合绿色化学要求的DMC制备路线,并可实现CO
2
资源化利用。氧化铈(CeO
2
)基催化剂被广泛应用于该反应,目前研究主要集中在形貌调控与杂原子掺杂对催化剂催化性能的影响。采用水热合成法制备了棒状CeO
2
前驱体,然后在不同的焙烧气氛(分别为H
2
、N
2
、air和O
2
)中处理前驱体得到相应催化剂,然后将催化剂应用于2-氰基吡啶(2-cp)作脱水剂的CO
2
和MeOH直接合成DMC(加入0.10 mol MeOH、0.05 mol 2-cp和0.32 g催化剂,在120 ℃、5 MPa的条件下反应2 h)中,研究了焙烧气氛对催化剂催化性能的影响。采用XRD、N
2
吸/脱附和SEM等对催化剂的晶相结构、织构性质和形貌等进行了表征。结果表明,4种催化剂在结构性质和形貌方面没有表现出明显差异,而催化剂表面的Ce价态与酸碱位点密切相关。催化剂表面存在的丰富缺陷位点使其具有较大的比表面积和平均孔径(CeO
2
-air的比表面积和平均孔径分别为65.44 m
2
/g和30.06 nm),催化剂主要暴露的CeO
2
(111)晶面能促进DMC的生成。与其他3种催化剂相比,CeO
2
-air因表面含有最丰富的中强酸碱位点和总的酸碱位点,以及较强的弱酸酸性而表现出最好的催化性能,该催化剂作用下的DMC产率和DMC选择性分别为83.2%和99.3%。
The direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO
2
) and methanol (MeOH) is a DMC preparation route that meets the requirements of green chemistry and can realize the resource utilization of CO
2
. Cerium oxide (CeO
2
) based catalysts are widely used in this reaction. The current researches focus on the effects of morphology regulation and heteroatom doping on the catalytic performance of the catalysts. The rod-shaped CeO
2
precursor was prepared by hydrothermal synthesis method
and then the corresponding catalysts were obtained by calcining the precursor in different atmospheres (H
2
N
2
air and O
2
respectively). Then the catalysts were applied to the direct synthesis of DMC from CO
2
and MeOH with 2-cyanopyridine (2-cp) as dehydrating agent (adding 0.10 mol MeOH
0.05 mol 2-cp and 0.32 g catalyst
reaction at the conditions of 120 ℃ and 5 MPa for 2 h). The effects of calcination atmospheres on the catalytic performance
of catalysts were studied. The crystal structures
texture properties and morphologies of the catalysts were characterized by XRD
N
2
absorption/desorption
SEM
etc. The results show that the four catalysts show no significant differences in structural properties and morphologies
and the valence of Ce on the catalysts surface is closely related to acid-base sites. The abundant defect sites on the catalysts surface enable them to have large specific surface areas and average pore sizes (specific surface area and average pore size of CeO
2
-air are 65.44 m
2
/g and 30.06 nm
respectively). The main exposed CeO
2
(111) crystal surface of the catalysts can promote the formation of DMC. Compared with the other three catalysts
CeO
2
-air exhibits the best catalytic performance due to its highest concentration of medium and strong acid-base sites and total acid-base sites
as well as the enhancement of weak acid acidity. The DMC yield and DMC selectivity of CeO
2
-air are 83.2% and 99.3%
respectively.
碳酸二甲酯直接合成CeO2催化剂焙烧气氛酸碱位点
dimethyl carbonatedirect synthesisCeO2 catalystscalcination atmospheresacid-base sites
SONG J M, LIU S H, YANG C S, et al. The role of Al doping in Pd/ZnO catalyst for CO2 hydrogenation to methanol [J]. Applied Catalysis B:Environmental, 2019, 263: 118367.
CAO Y X, CHENG H G, MA L L, et al. Research progress in the direct synthesis of dimethyl carbonate from CO2 and methanol [J]. Catalysis Surveys from Asia, 2012, 16(3): 138-147.
XIAO L F, LI F W, PENG J J, et al. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Journal of Molecular Catalysis A-Chemical, 2006, 253: 265-269.
BRUNO A V S, VIVANA M T M S, JOSÉ M L, et al. Review for the direct synthesis of dimethyl carbonate [J]. Chembioeng Reviews, 2014, 1(5): 214-229.
CHAUGULE A A, KIM H, TAMBOLI A H, et al. Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate [J]. Fuel, 2017, 200: 316-332.
KELLER N, REBMANN G, KELLER V, et al. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis [J]. Journal of Molecular Catalysis A-Chenmical, 2010, 317(1/2): 1-18.
HONDA M, TAMURA M, NAKAGAWA Y, et al. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies [J]. Chem Sus Chem, 2014, 318: 95-107.
WANG S P, ZHAO L F, WANG W, et al. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol [J]. Nanoscale, 2013, 5(12): 5582-5588.
CUI Z X, FAN J, DUAN H J, et al. Effect of calcination atmospheres on the catalytic performance of nano-CeO2 in direct synthesis of DMC from methanol and CO2 [J]. Korean Journal of Chemical Engineering, 2016, 34(1): 29-36.
FU Z W, YU Y H, LI Z, et al. Surface reduced CeO2 nanowires for direct conversion of CO2 and methanol to dimethyl arbonate: Catalytic performance and role of oxygen vacancy [J]. Catalysts, 2018, 8: 164.
LIU B, LI C M, ZHANG G Q, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods [J]. ACS Catalysis, 2018, 8: 10466-10456.
PERRET N, WANG X D, CHEN X W, et al. Selective hydrogenation of benzoic acid over Au supported on CeO2 and Ce0.62Zr0.38O2: Formation of benzyl alcohol [J]. Journal of Catalysis, 2014, 317: 114-125.
ZHENG Y Y, WANG N, ZONG Y, et al. The effects of precursors on the morphology and chemical mechanical polishing performance of ceria-based abrasives [J]. Materials, 2022, 15(21): 7515.
AO B Y, QIU R Z, HU S X. First-principles insights into the oxidation states and electronic structures of ceria-based binary, ternary, and quaternary oxides [J]. Journal of Physical Chemistry C, 2018, 123(1): 175-184.
CHEN X W, DELGADO J J, GATICA J M, et al. Preferential oxidation of CO in the presence of excess of hydrogen on Ru/Al2O3 catalyst: Promoting effect of ceria-terbia mixed oxide [J]. Journal of Catalysis, 2013, 299: 272-283.
ZHANG J Y, ZHAO S Y, ZHAO Y J, et al. Influence of valence state of cerium ion on dimethyl carbonate synthesis from methanol and carbon dioxide over CeO2 [J]. Asia-Pacific Journal of Chemical Engineering, 2020, 16(1): e2517.
MASLENNIKOV D V, MATVIENKO A A, CHIZHIK S A, et al. Synthesis and structural characterization of ceria nanoparticle agglomerates with shape inherited from an oxalate precursor [J]. Cramics Iternational, 2018, 45(3): 4137-4141.
ZHANG Y, CHEN M X, ZHANG Z X, et al. Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution [J]. Catalysis Today, 2019, 327: 323-333.
LIU Z S, YU F, PAN K K, et al. Two-dimensional vermiculite carried CuCoCe catalysts for CO-SCR in the presence of O2 and H2O: Experimental and DFT calculation [J]. Chemical Engineering Journal, 2021, 422: 130099.
石子兴, 姚懿轩, 丁传敏, 等. In掺杂CeO2催化CO2和MeOH一步合成DMC反应的研究[J]. 低碳化学与化工, 2023, 48(4): 16-22+76.
SHI Z X, YAO Y X, DING C M, et al. Synthesis of DMC with CO2 and methanol catalyzed by In doping CeO2 [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 16-22+76.
LARACHI F, PIERRE J, ADNOR A, et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J]. Applied Surface Science, 2002, 195(1-4): 236-250.
ARESTA M, DIBENEDETTO A, PASTORE C, et al. Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism [J]. Journal of Catalysis, 2010, 269(1): 44-52.
STOIAN D, MEDINA F, URAKAWA A, et al. Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine [J]. ACS Catalysis, 2018, 8(4): 3181-3193.
ALMUSAITEER K. Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts [J]. Catalysis Communications, 2009, 10(7): 1127-1131.
LI A X, PU Y F, LI F, et al. Synthesis of dimethyl carbonate from methanol and CO2 over Fe-Zr mixed oxides [J]. Journal of CO2 Utilization, 2017, 19: 33-39.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution