浏览全部资源
扫码关注微信
1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
2.山西浙大新材料与化工研究院,山西 太原,030000
Published:25 July 2024,
Received:28 November 2023,
Revised:25 December 2023,
扫 描 看 全 文
宋锦博,屈婷,荆洁颖等.MgO基CO2吸附剂成型技术研究进展[J].低碳化学与化工,2024,49(07):1-12.
SONG Jinbo,QU Ting,JING Jieying,et al.Research progress on granulation technologies of MgO-based CO2 adsorbent[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):1-12.
宋锦博,屈婷,荆洁颖等.MgO基CO2吸附剂成型技术研究进展[J].低碳化学与化工,2024,49(07):1-12. DOI: 10.12434/j.issn.2097-2547.20230390.
SONG Jinbo,QU Ting,JING Jieying,et al.Research progress on granulation technologies of MgO-based CO2 adsorbent[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):1-12. DOI: 10.12434/j.issn.2097-2547.20230390.
碳捕集、利用与封存(CCUS)技术是缓解温室效应的有效途径。使用固体吸附剂捕集CO
2
是减少CO
2
排放的可靠途径之一。在各种固体吸附剂中,MgO基吸附剂由于具有来源广泛、再生温度低以及理论吸附容量高的特点备受关注。但成型后的MgO基吸附剂颗粒面临着机械强度低、稳定性差和极易逸出反应器等问题,难以在工业中被广泛应用。重点总结了不同成型方法以及成型工艺条件对MgO基吸附剂的CO
2
吸附性能的影响。在MgO基吸附剂成型时,颗粒尺寸较小的吸附剂的碳酸化速率较快,磨耗率较低。添加适量成型助剂和蒸汽可以改善吸附剂颗粒的化学性能和机械强度,但较高的煅烧温度会加剧吸附剂颗粒的烧结和磨损。今后,MgO基CO
2
吸附剂成型技术的研究重点应以简单的工艺、低成本和良好的循环稳定性为立足点,制备既具有良好CO
2
吸附性能,又具有良好机械性能的吸附剂颗粒应用于工业化CO
2
捕集。
Carbon capture
utilization and storage (CCUS) technology is an effective way to mitigate the greenhouse effect. Using solid adsorbents to capture CO
2
is considered to be one of reliable ways of reducing CO
2
emissions. MgO-based adsorbe
nts have attracted much attention due to their wide source
low regeneration temperature and high theoretical adsorption capacity in various solid adsorbents. However
the formed MgO-based adsorbents still face the problems of low mechanical strength
poor stability and easy to escape from the reactor
so they are difficult to be widely used in industry. The effects of different granulation methods and granulation process conditions on the CO
2
adsorption performance of MgO-based adsorbents were summarized. In the granulation process
the MgO-based adsorbents with smaller particle sizes have faster carbonation rates and lower wear rates. The chemical properties and mechanical strength of adsorbent particles can be improved by adding proper amount of granulation additives and steam. However
higher calcination temperatures can exacerbate sintering and wear of absorbent particles. In the future
the research should focus on developing simplified processes
low costs and good cycle stability
and prepare absorbent particles with both excellent CO
2
adsorption performance and mechanical properties for industrial-scale CO
2
capture.
MgO基吸附剂CO2捕集成型方法成型技术
MgO-based adsorbentCO2 capturegranulation methodsgranulation technologies
CHEN W H, CHEN C Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review [J]. Applied Energy, 2020, 258: 114078.
GAO W L, ZHOU T T, GAO Y S, et al. Enhanced water gas shift processes for carbon dioxide capture and hydrogen production [J]. Applied Energy, 2019, 254: 113700.
荆洁颖, 屈婷, 陶威, 等. CO2原位捕集强化水气变换制氢研究进展[J]. 煤炭学报, 2023, 48(2): 986-995.
JING J Y, QU T, TAO W, et al. An overview on CO2 sorption enhanced water gas shift for hydrogen production [J]. Journal of China Coal Society, 2023, 48(2): 986-995.
NAJMI B, BOLLAND O, COLOMBO K E. Load-following performance of IGCC with integrated CO2 capture using SEWGS pre-combustion technology [J]. International Journal of Greenhouse Gas Control, 2015, 35: 30-46.
高婉琳. 熔融盐改性MgO中温CO2吸附效能与机制研究[D]. 北京: 北京林业大学, 2022.
GAO W L. Performance and mechanism study on molten salt modified MgO adsorbents for intermediate-temperature CO2 capture [D]. Beijing: Beijing Forestry University, 2022.
江涛, 魏小娟, 王胜平, 等. 固体吸附剂捕集CO2的研究进展[J]. 洁净煤技术, 2022, 28(1): 42-57.
JIANG T, WEI X J, WANG S P, et al. Research progress on solid sorbents for CO2 capture [J]. Clean Coal Technology, 2022, 28(1): 42-57.
高婉, 严格, 徐永辉, 等. 用于二氧化碳捕集的固体吸附剂研究进展[J]. 低碳化学与化工, 2023, 48(1): 145-155.
GAO W, YAN G, XU Y H, et al. Research progress on solid adsorbents for carbon dioxide capture [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(1): 145-155.
RUHAIMI A H, AZIZ M A A, JALIL A A. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities [J]. Journal of CO2 Utilization, 2021, 43: 101357.
CUI H J, ZHANG Q M, HU Y W, et al. Ultrafast and stable CO2 capture using alkali metal salt-promoted MgO-CaCO3 sorbents [J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20611-20620.
RYU D Y, JO S, KIM T Y, et al. Influence of the sorption pressure and K2CO3 loading of a MgO-based sorbent for application to the SEWGS process [J]. Korean Journal of Chemical Engineering, 2022, 39(4): 1028-1035.
KIM T K, LEE K J, YUH J, et al. Multi-core MgO NPs@C core-shell nanospheres for selective CO2 capture under mild conditions [J]. New Journal of Chemistry, 2014, 38(4): 1606-1610.
HAN S J, BANG Y, KWON H J, et al. Elevated temperature CO2 capture on nano-structured MgO-Al2O3 aerogel: Effect of Mg/Al molar ratio [J]. Chemical Engineering Journal, 2014, 242: 357-363.
PU L, UNLUER C. Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes [J]. Construction and Building Materials, 2016, 120: 349-363.
HARADA T, HATTON T A. Colloidal nanoclusters of MgO coated with alkali metal nitrates/nitrites for rapid, high capacity CO2 capture at moderate temperature [J]. Chemistry of Materials, 2015, 27(23): 8153-8161.
GAO W L, ZHOU T T, GAO Y S, et al. Study on MNO3/NO2 (M = Li, Na, and K)/MgO composites for intermediate-temperature CO2 capture [J]. Energy & Fuels, 2018, 33(3): 1704-1712.
CUI H J, CHENG Z M, ZHOU Z M. Unravelling the role of alkaline earth metal carbonates in intermediate temperature CO2 capture using alkali metal salt-promoted MgO-based sorbents [J]. Journal of Materials Chemistry A, 2020, 8(35): 18280-18291.
JIN S, HO K, LEE C H. Facile synthesis of hierarchically porous MgO sorbent doped with CaCO3 for fast CO2 capture in rapid intermediate temperature swing sorption [J]. Chemical Engineering Journal, 2018, 334: 1605-1613.
ZHANG K L, LI X H S, LI W Z, et al. Phase transfer-catalyzed fast CO2 absorption by MgO-based absorbents with high cycling capacity [J]. Advanced Materials Interfaces, 2014, 1(3): 1400030.
CHEN J, DUAN L B, DONAT F, et al. Assessment of the effect of process conditions and material characteristics of alkali metal salt promoted MgO-based sorbents on their CO2 capture performance [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(19): 6659-6672.
ZHANG L J, ZHENG Y H, GUO Y F, et al. Alkali metal nitrates promoted MgO composites with high CO2 uptake for thermochemical energy storage [J]. ACS Applied Energy Materials, 2021, 4(9): 9513-9524.
GAO W L, XIAO J W, WANG Q, et al. Unravelling the mechanism of intermediate-temperature CO2 interaction with molten-NaNO3-salt-promoted MgO [J]. Advanced Materials, 2021, 34(4): e2106677.
LANDUYT A, KUMAR P V, YUWONO J A, et al. Uncovering the CO2 capture mechanism of NaNO3-promoted MgO by 18O isotope labeling [J]. JACS Au, 2022, 2(12): 2731-2741.
GUO Y F, SUN J, WANG R L, et al. Recent advances in potassium-based adsorbents for CO2 capture and separation: A review [J]. Carbon Capture Science & Technology, 2021, 100011.
徐运飞, 李英杰, 王涛, 等. MgO 吸附剂捕集 CO2 的研究进展[J]. 洁净煤技术, 2021, 27(1): 125-134.
XU Y F, LI Y J, WANG T, et al. Research progress on MgO sorbents for CO2 capture [J]. Clean Coal Technology, 2021, 27(1): 125-134.
周治峰. 固体催化剂成型工艺的研究进展[J]. 辽宁化工, 2015, 44(2): 155-157.
ZHOU Z F. Research progress in molding methods of solid catalysts [J]. Liaoning Chemical Industry, 2015, 44(2): 155-157.
于戈, 付瑞诚, 李敏, 等. 燃煤烟气CO2吸附剂造粒成型技术研究进展[J]. 煤炭科学技术, 2022, 50(6): 96-106.
YU G, FU R C, LI M, et al. Research progress of granulation technique of CO2 adsorbent from coal-firedflue gas [J]. Coal Science and Technology, 2022, 50(6): 96-106.
ZHANG X Y, LIU W Q, ZHOU S M, et al. A review on granulation of CaO-based sorbent for carbon dioxide capture [J]. Chemical Engineering Journal, 2022, 446: 136880.
QIN C L, YIN J J, AN H, et al. Performance of extruded particles from calcium hydroxide and cement for CO2 capture [J]. Energy & Fuels, 2011, 26(1): 154-161.
QIN C L, DU H, LIU L, et al. CO2 Capture performance and attrition property of CaO-based pellets manufactured from organometallic calcium precursors by extrusion [J]. Energy & Fuels, 2013, 28(1): 329-339.
谢曙钊, 胥会祥, 区汉东, 等. 造粒方法及设备的研究进展[J]. 化工装备技术, 2022, 43(1): 10-14.
XIE S Z, XU H X, OU H D, et al. Research progress of granulation methods and equipment [J]. Chemical Equipment Technology, 2022, 43(1): 10-14.
SUN J, LIU W Q, HU Y C, et al. Structurally improved, core-in-shell, CaO-based sorbent pellets for CO2 capture [J]. Energy & Fuels, 2015, 29(10): 6636-6644.
WU Y H, MANOVIC V, HE I, et al. Modified lime-based pellet sorbents for high-temperature CO2 capture: Reactivity and attrition behavior [J]. Fuel, 2012, 96: 454-461.
DUAN L B, YU Z J, ERANS M, et al. Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture [J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9476-9484.
HU Y C, LIU X W, ZHOU Z J, et al. Pelletization of MgO-based sorbents for intermediate temperature CO2 capture [J]. Fuel, 2017, 187: 328-337.
张珏伟. 改性钙基、镁基小球循环捕获烟气CO2性能的研究[D]. 徐州: 中国矿业大学, 2020.
ZHANG J W. Study on cyclic capture of CO2 in flue gas by modified calcium-based and magnesium-based pellets [D]. Xuzhou: China University of Mining and Technology, 2020.
LONG Y, SUN J, MO C N, et al. One-step fabricated Zr-supported, CaO-based pellets via graphite-moulding method for regenerable CO2 capture [J]. Science of The Total Environment, 2022, 851.
LI H L, QU M Y, YANG Y D, et al. One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture [J]. Chemical Engineering Journal, 2019, 374: 619-625.
HU Y C, LIU W Q, PENG Y, et al. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique [J]. Fuel Processing Technology, 2017, 160: 70-77.
ZHANG H, JIANG T, YASEEN H A S M, et al. Pelletization and attrition of CaO-based adsorbent for CO2 capture [J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(4): e2656.
李贺, 曾贤君, 张利杰, 等. 固相催化剂成型助剂研究进展[J]. 无机盐工业, 2019, 51(10): 12-17.
LI H, ZENG X J, ZHANG L J, et al. Progress in forming additive for solid catalyst [J]. Inorganic Chemicals Industry, 2019, 51(10): 12-17.
CAI Y F, LIU W, SUN Z, et al. Granulation of alkaline metal nitrate promoted MgO adsorbents and the low-concentration CO2 capture performance in the fixed bed adsorber [J]. Journal of CO2 Utilization, 2022, 61: 2-12.
ZHENG Y H, WU J Y, ZHANG L J, et al. Unravelling the pore templating effect on CO2 adsorption performance of alkali metal nitrates promoted MgO pellets [J]. Chemical Engineering Journal, 2022, 450: 137944.
JIN S, KO K J, LEE C H. Direct formation of hierarchically porous MgO-based sorbent bead for enhanced CO2 capture at intermediate temperatures [J]. Chemical Engineering Journal, 2019, 371: 64-77.
JIN S, KO K J, SONG Y G, et al. Fabrication and kinetic study of spherical MgO agglomerates via water-in-oil method for pre-combustion CO2 capture [J]. Chemical Engineering Journal, 2019, 359: 285-297.
ZHANG W, LI Y J, DUAN L B, et al. Attrition behavior of calcium-based waste during CO2 capture cycles using calcium looping in a fluidized bed reactor [J]. Chemical Engineering Research and Design, 2016, 109: 806-815.
CHEN H C, ZHAO C S, YU W W. Calcium-based sorbent doped with attapulgite for CO2 capture [J]. Applied Energy, 2013, 112: 67-74.
CHEN H C, ZHAO C S, YANG Y M. Enhancement of attrition resistance and cyclic CO2 capture of calcium-based sorbent pellets [J]. Fuel Processing Technology, 2013, 116: 116-122.
XU R C, SUN J, ZHANG X Y, et al. Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding [J]. Separation and Purification Technology, 2023, 315: 2-11.
SUN J, LIU W Q, HU Y C, et al. Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture [J]. Chemical Engineering Journal, 2016, 285: 293-303.
张立忠, 王成, 侯红英, 等. 载体形状对催化剂物化性能的影响[J]. 当代化工, 2014, 43(12): 2506-2508.
ZHANG L Z, WANG C, HOU H Y, et al. Impact of the shape on physical and chemical properties of catalyst [J]. Contemporary Chemical Industry, 2014, 43(12): 2506-2508.
叶青, 刘铭钰, 李新, 等. 镁铝水滑石催化剂成型因素对碳酸酯交换反应的影响[J]. 天然气化工—C1化学与化工, 2021, 46(6): 57-64.
YE Q, LIU M Y, LI X, et al. Effect of Mg-Al hydrotalcite catalysts molding factors on carbonate transesterification [J]. Natural Gas Chemical Industry, 2021, 46(6): 57-64.
MANOVIC V, ANTHONY E J. Reactivation and remaking of calcium aluminate pellets for CO2 capture [J]. Fuel, 2011, 90(1): 233-239.
SUN J, LIANG C, TONG X L, et al. Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets [J]. Fuel, 2019, 239: 1046-1054.
RIDHA F N, LU D Y, SYMONDS R T, et al. Attrition of CaO-based pellets in a 0.1 MW th dual fluidized bed pilot plant for post-combustion CO2 capture [J]. Powder Technology, 2016, 291: 60-65.
PI S, ZHANG Z H, HE D L, et al. Investigation of Y2O3/MgO-modified extrusion-spheronized CaO-based pellets for high-temperature CO2 capture [J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(6): e2366.
SUN J, YANG Y D, GUO Y F, et al. Stabilized CO2 capture performance of wet mechanically activated dolomite [J]. Fuel, 2018, 222: 334-342.
HU Y C, CHEN Y J, FU R C, et al. Steam reactivation of spent CaO/CaCO3 for thermochemical energy storage [J]. Solar Energy, 2023, 255: 138-145.
DUNSTAN M T, DONAT F, BORK A H, et al. CO2 Capture at medium to high temperature using solid oxide-based sorbents: Fundamental aspects, mechanistic insights, and recent advances [J]. Chemical Reviews, 2021, 121(20): 12681-12745.
DONG J, TANG Y J, NZIHOU A, et al. Effect of steam addition during carbonation, calcination or hydration on re-activation of CaO sorbent for CO2 capture [J]. Journal of CO2 Utilization, 2020, 39(2): 101167.
DONAT F, FLORIN N H, ANTHONY E J, et al. Influence of high-temperature steam on the reactivity of CaO sorbent for CO2 capture [J]. Environmental Science & Technology, 2012, 46(2): 1262-1269.
GHOSH S, KOKOT-BLAMEY J, BOOT-HANDFORD M E, et al. Kinetics modeling, development, and comparison for the reaction of calcium oxide with steam [J]. Energy & Fuels, 2019, 33(6): 5505-5517.
SUN J, WANG W Y, YANG Y D, et al. Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation [J]. Fuel, 2020, 266: 117056.
LI C C, CHENG J Y, LIU W H, et al. Enhancement in cyclic stability of the CO2 adsorption capacity of CaO-based sorbents by hydration for the calcium looping cycle [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(1): 227-232.
RONG N, WANG J H, LIU K W, et al. Enhanced CO2 capture durability and mechanical properties using cellulose-templated CaO-based pellets with steam injection during calcination [J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1533-1541.
RONG N, WU Y, WANG J H, et al. Steam reactivation of biotemplated CaO-based pellets for cyclic CO2 capture [J]. Energy & Fuels, 2021, 35(7): 6056-6067.
RONG N, WANG J H, HAN L, et al. Effect of steam addition during calcination on CO2 capture performance and strength of bio-templated Ca-based pellets [J]. Journal of CO2 Utilization, 2022, 63: 102127.
DING Y D, ZHAO X X, CHEN L, et al. Hydration activation of MgO pellets for CO2 adsorption [J]. Industrial & Engineering Chemistry Research, 2021, 60(14): 5310-5318.
KOLLE J M, FAYAZ M, SAYARI A. Understanding the effect of water on CO2 adsorption [J]. Chemical Reviews, 2021, 121(13): 7280-7345.
DING Y D, SONG G, LIAO Q, et al. Bench scale study of CO2 adsorption performance of MgO in the presence of water vapor [J]. Energy, 2016, 112: 101-110.
ZARGHAMI S, HASSANZADEH A, ARASTOOPOUR H, et al. Effect of steam on the reactivity of MgO-based sorbents in precombustion CO2 capture processes [J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 8860-8866.
WOLF D, BARRÉ-CHASSONNERY M, HÖHENBERGER M, et al. Kinetic study of the water - gas shift reaction and its role in the conversion of methane to syngas over a Pt/MgO catalyst [J]. Catalysis Today, 1998, 40: 147-156.
GRAVOGL G, KNOLL C, WELCH J M, et al. Cycle stability and hydration behavior of magnesium oxide and its dependence on the precursor-related particle morphology [J]. Nanomaterials, 2018, 8(10): 795.
CHEN J G, HUANG L, DONG L, et al. Hydration behavior of MgO surface: A first-principles study [J]. Applied Surface Science, 2023, 611: 155441.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution