1.中国石油集团石油化工研究院有限公司,北京 102206
2.中国石油大庆石油化工有限公司,黑龙江 大庆 230600
扫 描 看 全 文
蔡勇,朱瑞松,魏弢等.二氧化碳捕集技术研究进展及其在驱油中的应用[J].低碳化学与化工,2024,49(01):85-93.
CAI Yong,ZHU Ruisong,WEI Tao,et al.Research progress of carbon dioxide capture technologies and their application in enhanced oil recovery[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):85-93.
蔡勇,朱瑞松,魏弢等.二氧化碳捕集技术研究进展及其在驱油中的应用[J].低碳化学与化工,2024,49(01):85-93. DOI: 10.12434/j.issn.2097-2547.20230346.
CAI Yong,ZHU Ruisong,WEI Tao,et al.Research progress of carbon dioxide capture technologies and their application in enhanced oil recovery[J].Low-carbon Chemistry and Chemical Engineering,2024,49(01):85-93. DOI: 10.12434/j.issn.2097-2547.20230346.
控制二氧化碳(CO,2,)排放对保护环境至关重要。综述了目前主流的CO,2,捕集技术,包括吸收法和吸附法。介绍了膜分离、离子液体和超重力等化工过程强化技术分别结合吸收法和吸附法在CO,2,捕集中的研究进展。CO,2,驱油(CO,2,-EOR)是CO,2,捕集后重要的封存及利用方式,介绍了化学吸收法CO,2,捕集应用于CO,2,-EOR项目的典型案例。指出需要进一步降低目前CO,2,捕集技术的能耗和成本、提高CO,2,-EOR注入气源的质量和纯度,并对未来CO,2,捕集、利用和封存技术的发展进行了展望。
Controlling carbon dioxide (CO,2,) emissions is crucial for environmental protection. An overview of current mainstream CO,2, capture technologies was provided, including absorption and adsorption methods. The research progress of chemical process intensification technologies, including membrane separation, ionic liquids and hypergravity, in combination with absorption or adsorption methods for CO,2, capture were introduced. CO,2,-enhanced oil recovery (CO,2,-EOR) is a significant storage and utilization method after CO,2, capture, The typical cases of applying CO,2, capture by chemical absorption method in CO,2,-EOR projects were introduced. It pointed out the need for further reduction in the energy consumption and cost of current CO,2, capture technologies, as well as the enhancement of the quality and purity of CO,2,-EOR injection gas. An outlook on the future development of CO,2, capture, utilization, and storage technologies was also provided.
二氧化碳捕集化学吸收法化工过程强化工业应用
carbon dioxide capturechemical absorption methodchemical process intensificationindustrial application
于洋, 刘琦, 吕静, 等. 碳酸酐酶固定及在二氧化碳捕集应用研究进展[J]. 洁净煤技术, 2021, 27(2): 69-78.
YU Y, LIU Q, LV J, et al. Research progress on the immobilization of carbonic anhydrase and its application in carbon dioxide capture [J]. Clean Coal Technology, 2021, 27(2): 69-78.
李月清. 解码CCUS——我国碳捕集、利用与封存现状、成本及对策透析[J]. 中国石油企业, 2021, (8): 36-37.
LI Y Q. Decode CCUS—Status,utilization and sealing of carbon capture,cost and countermeasures for dialysis [J]. China Petroleum Enterprise, 2021, (8): 36-37.
魏宁, 姜大霖, 刘胜男, 等. 国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J]. 中国电机工程学报, 2020, 40(4): 1258-1265.
WEI N, JIANG D L, LIU S N, et al. Cost competitiveness analysis of retrofitting CCUS to coal-fired power plants [J]. Proceedings of the CSEE, 2020, 40(4): 1258-1265.
仲平, 彭斯震, 贾莉, 等. 中国碳捕集、利用与封存技术研发与示范[J]. 中国人口·资源与环境, 2011, 21(12): 41-45.
ZHONG P, PENG S Z, JIA L, et al. Development of carbon capture,utilization and storage (CCUS) technology in china [J]. China Population, Resources and Environment, 2011, 21(12): 41-45.
宋存义, 周向. 捕集低浓度二氧化碳的化学吸收工艺及其综合比较[J]. 环境工程学报, 2012, 6(1): 1-8.
SONG C Y, ZHOU X. Chemical absorption processes for low concentration CO2 and comprehensive comparison [J]. Chinese Journal of Environmental Engineering, 2012, 6(1): 1-8.
周媛, 薛建明. 燃烧后CO2气体捕集技术研究[J]. 电力科技与环保, 2013, 29(6): 14-16.
ZHOU Y, XUE J M. Research on CO2 capture technology after combustion [J]. Electric Power Technology and Environmental Protection, 2013, 29(6): 14-16.
SHENG M P, XIE C X, ZENG X F, et al. Intensification of CO2 capture using aqueous diethylenetriamine (DETA) solution from simulated flue gas in a rotating packed bed [J]. Fuel, 2018, 234: 1518-1527.
邓永峰. PVDF中空纤维膜接触器吸收CO2过程的膜浸润动力学研究[D]. 北京: 北京化工大学, 2017.
DENG Y F. Dynamic study of membrane wetting in the hollow fiber membrane contacting process for CO2 absorption [D]. Beijing: Beijing University of Chemical Technology, 2017.
揭超, 赵东亚, 朱全民, 等. 醇胺法碳捕集工艺解吸塔的节能优化 [C]//中国自动化学会过程控制专业委员会. 第26届中国过程控制会议(CPCC2015)论文集. 南昌, 2015: 44.
JIE C, ZHAO Y D, ZHU Q M, et al. Energy saving optimization of desorption tower in alcohol amine carbon capture process [C]//Process Control Professional Committee of China Association of Automation. Proceedings of the 26th China Process Control Conference (CPCC2015. Nanchang, 2015: 44.
储可弘, 陈绍云, 李强, 等. 基于N-乙基乙醇胺非水CO2吸收剂的抗氧化剂[J]. 化工进展, 2019, 38(12): 5565-5571.
CHU K H, CHEN S Y, LI Q, et al. Oxidation inhibitor for thylethanolamine based non-aqueous CO2 absorbent [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5565-5571.
晏水平, 方梦祥, 张卫风, 等. 烟气中CO2化学吸收法脱除技术分析与进展[J]. 化工进展, 2006, 25(9): 1018-1024.
YAN X P, FANG M X, ZHANG W F, et al. Technique analyses and research progress of CO2 separation from flue gas by chemical absorption [J]. Chemical Industry and Engineering Progress, 2006, 25(9): 1018-1024.
仲东魁. 物理溶剂吸收法制氢尾气二氧化碳提浓工艺技术研究[J]. 化工管理, 2018, (1): 180.
ZHONG D K. Study on carbon dioxide concentration of hydrogen tail gas by physical solvent absorption Method [J]. Chemical Enterprise Management, 2018, (1): 180.
徐宝龙. 典型CO2分离方法在IGCC系统中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2011.
XU B L. Application of typical CO2 separation method in IGCC system [D]. Harbin: Harbin Institute of Technology, 2011.
余良谋. 甲苯变温吸附及真空解吸实验研究[D]. 昆明: 昆明理工大学, 2016.
YU L M. Experimental study on toluene thermostatic adsorption and vacuum desorption [D]. Kunming: Kunming University of Science and Technology, 2016.
张少君. 基于膜分离系统优化的CO2驱油伴生气CO2捕集研究[D]. 北京: 华北电力大学(北京), 2019.
ZHANG S J. CO2 capture of CO2 flooding associated gas based on membrane separation system optimization [D]. Beijing: North China Electric Power University (Beijing), 2019.
王志, 伍泓宇, 赵颂, 等. 一种用于烟气二氧化碳捕集的二级膜分离系统及方法: 112516758A [P]. 2021-03-19.
WANG Z, WU H Y, ZHAO S, et al. A secondary membrane separation system for flue gas carbon dioxide capture and a method thereof: 112516758A [P]. 2021-03-19.
张长金, 尹燕华, 龚峻松, 等. 中空纤维膜接触器吸收低浓度CO2气体研究[J]. 舰船科学技术, 2010, 32(12): 55-59.
ZHANG C J, YIN Y H, GONG J S, et al. The study of low concentration CO2 removal by hollow fiber membrane contactor [J]. Ship Science and Technology, 2010, 32(12): 55-59.
杨超鹏, 刘杰, 史宏达, 等. 不同中空纤维膜材料对烟气中二氧化硫的吸收性能影响[J]. 化工进展, 2020, 39(8): 3205-3212.
YANG C P, LIU J, SHI H D, et al. Absorption properties of hollow fiber membranes of different materials for flue gas desulfurization [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3205-3212.
YEON S H, LEE K S, SEA B, et al. Application of pilot-scale membrance contactor hybrid system for removal of carbon dioxide from flue gas [J]. Journal of Membrance Science. 2005, 257(1/2): 156-160.
CHOWDHURY M K, YAMADA H, HIGASHII T. CO2 capture by tertiary amine absorbents: A performance comparison study [J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8323-8331.
吴佳佳, 潘振, 商丽艳, 等. 中空纤维膜接触器中N,N-二甲基乙醇胺吸收CO2的特性[J]. 化工进展, 2022, 41(4): 2132-2139.
WU J J, PAN Z, SHANG L Y, et al. Characteristics of CO2 absorption by N,N-dimethylethanolamine (DMEA) in hollow fiber membrane contactor [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2132-2139.
CAO F, GAO H X, LI H P, et al. Experimental and theoretical studies on mass transfer performance for CO2 absorption into aqueous N,N-dimethylethanolamine solution in the polytetrafluoroethylene hollow-fiber membrane contactor [J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16862-16874.
马伟春. 基于中空纤维膜接触器的混合胺吸收剂脱除烟气中CO2 [J]. 应用化工, 2021, 50(1): 61-69.
MA W C. Removal of CO2 from flue gas by mixed absorbent based on hollow fiber membrane contactor [J]. Applied Chemical Industry, 2021, 50(1): 61-69.
NWAOHA C, TONTIWACHWUTHIKUL P, BENAMOR A. CO2 capture from water-gas shift process plant: Comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1,5-diamino-2-methylpentane [J]. International Journal of Greenhouse Gas Control, 2019, 82: 218-228.
SARKAR M K, BAL K, HE F, et al. Design of an outstanding super-hydrophobic surface by electro-spinning [J]. Applied Surface Science, 2011, 257(15): 7003-7009.
TAHERI M, ZHU R S, YU G Q, et al. Ionic liquid screening for CO2 capture and H2S removal from gases: The syngas purification case [J]. Chemical Engineering Science, 2021, 230(1): 116199.
YANG Q W, XING H B, BAO Z B, et al. One of the distinctive properties of ionic liquids over molecular solvents and inorganic salts: Enhanced basicity stemming from the electrostatic environment and “Free” microstructure [J]. The Jounal of Physical Chemistry B, 2014, 118(13): 3682-3688.
AKI S N V K, MELLEIN B R, SAURER E M, et al. High-pressure phase behavior of carbon dioxide with imidazoliumbased ionic liquids [J]. The Jounal of Physical Chemistry B, 2004, 108(52): 20355-20365.
MULDOON M J, AKI S N V K, ANDERSON J L, et al. Improving carbon dioxide solubility in ionic liquids [J]. The Jounal of Physical Chemistry B, 2007, 111(30): 9001-9009.
KUMELAN J, PEREZ-SALADO K A, TUMA D, et al. Solubility of CO2 in the ionic liquids [bmim][CH3SO4] and [bmim][PF6] [J]. Journal of Chemical and Engineering Data, 2006, 51(5): 1802-1807.
ANDERSON J L, DIXON J K, BRENNECKE J F. Solubility of CO2, CH4, C2H6, C2H4, O2 and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: Comparison to other ionic liquids [J]. Accounts of Chemical Research, 2007, 40(11): 1208-1216.
ANDERSON J L, DIXON J K, MAGINN E J, et al. Measurement of SO2 solubility in ionic liquids [J]. The Jounal of Physical Chemistry B, 2006, 110(31): 15059-15062.
BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society, 2002, 124(6): 926-927.
GURKAN B E, JUAN C F, ELAINE M, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids [J]. Journal of the American Chemical Society, 2010, 132(7): 2116-2117.
YANG Q W, WANG Z P, BAO Z B, et al. New insights into CO2 absorption mechanisms with amino-acid ionic liquids [J]. ChemSusChem, 2016, 9(8): 806-812.
LIU X M, ZHOU G H, ZHANG S J, et al. Molecular dynamics simulation of dual amino-functionalized imidazoliumbased ionic liquids [J]. Fluid Phase Equilibrium, 2009, 284(1): 44-49.
WANG C M, LUO X Y, LUO H M, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture [J]. Angewandte Chemie (International ed. in English), 2011, 50(21): 4918-4922.
ZHANG Z G, FAN F J, XING H B, et al. Efficient Synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 2841-2846.
XIE C X, DONG Y N, ZHANG L L, et al. Low Concentration CO2 capture from natural gas power plants using rotating packed bed reactor [J]. Energy & Fuels, 2019, 33: 1713-1721.
初广文, 邹海魁, 曾晓飞, 等. 超重力反应强化技术及工业应用[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 33-39.
CHU G W, ZOU H K, ZENG X F, et al. High-gravity reaction process intensification and its industrial applications [J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 33-39.
SHENG M P, SUN B C, ZHANG F M, et al. Mass-transfer characteristics of the CO2 absorption process in a rotating packed bed [J]. Energy & Fuels, 2016, 30(5): 4215-4220.
CHAMCHAN N, CHANG J Y, HSIAO-CHING H, et al. Comparison of rotating packed bed and packed bed absorber in pilot plant and model simulation for CO2 capture [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 73: 20-26.
ZHANG L L, WANG J X, XIANG Y, et al. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: Mass transfer study [J]. Industrial & Engineering Chemistry Research. 2011, 50(11): 6957-6964.
LUO Y, CHU G W, ZOU H K, et al. Mass transfer studies in a rotating packed bed with novel rotors: Chemisorption of CO2 [J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 9164-9172.
陈建峰, 初广文, 邹海魁. 一种超重力旋转床装置及在二氧化碳捕集纯化工艺的应用: 101549274 [P]. 2009-10-07.
CHEN J F, CHU G W, ZOU H K. A high gravity rotary bed device and its application in carbon dioxide capture and purification process: 101549274 [P]. 2009-10-07.
刘有智, 任慧云, 申红艳, 等. 一种用于捕集CO2的装置和方法: 113941223A [P]. 2022-01-18.
LIU Y Z, REN H Y, SHEN H Y, et al. Device and method for CO2 capture: 113941223A [P]. 2022-01-18.
李小松. CCUS产业发展机遇和挑战[N]. 中国石油报, 2022-01-18.
LI X S. Opportunities and challenges of CCUS industry development [N]. China Petroleum News, 2022-01-18.
赵志强, 张贺, 焦畅, 等. 全球CCUS技术和应用现状分析[J]. 现代化工, 2021, 41(4): 5-10.
ZHAO Z Q, ZHANG H, JIAO C, et al. Review on global CCUS technology and application [J]. Modern Chemical Industry, 2021, 41(4): 5-10.
赵红涛, 王树民. 燃煤烟气胺法脱碳MVR再生系统关键参数及能耗分析[J]. 化工进展, 2020, 39(S1): 256-262.
ZHAO H T, WANG S M. Key parameters and energy consumption analysis of amine decarburization regeneration system with MVR for coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 256-262.
闫海生. 李勇武会长考察吉林油田二氧化碳驱油与埋存项目[J]. 中国石油和化工经济分析, 2014, (9): 4.
YAN H S. Li Yongwu president of Jilin oilfield, investigated carbon dioxide flooding and storage project [J]. Economic Analysis of China Petroleum and Chemical Industry, 2014, (9): 4.
郭晓敏, 蔡闻佳. 全球碳捕捉、利用和封存技术的发展现状及相关政策[J]. 中国能源, 2013, 35(3): 39-42.
GUO X M, CAI W J. Status of the global CCUS technology development and related policy recommendations [J]. Energy of China, 2013, 35(3): 39-42.
张起花. 中石化的低碳模范生[J]. 中国石油石化, 2013, 14: 46-49.
ZHANG Q H. SINOPEC low-carbon model student [J]. China Petrochem, 2013, 14: 46-49.
段玉燕, 罗海中, 林海周, 等. 浅谈国内外CCUS示范项目经验[J]. 山东化工, 2018, 47(20): 173-178.
DUAN Y Y, LUO H Z, LIN H Z, et al. A brief discussion on the experience of CCUS demonstration projects at home and abroad [J]. Shandong Chemical Industry, 2018, 47(20): 173-178.
0
Views
6
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution