浏览全部资源
扫码关注微信
1.同济大学 环境科学与工程学院,上海 200092
2.上海洗霸气候科学技术有限公司,上海 200091
Published:25 February 2024,
Received:20 September 2023,
Revised:20 November 2023,
扫 描 看 全 文
李取超,殷国栋,姚国栋等.EDTA间接滴定法快速检测CO2吸收液中碳酸氢根与碳酸根总量的研究[J].低碳化学与化工,2024,49(02):89-95.
LI Quchao,YIN Guodong,YAO Guodong,et al.Research on rapid determination of total bicarbonate and carbonate in CO2 absorption solution by EDTA indirect titration[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):89-95.
李取超,殷国栋,姚国栋等.EDTA间接滴定法快速检测CO2吸收液中碳酸氢根与碳酸根总量的研究[J].低碳化学与化工,2024,49(02):89-95. DOI: 10.12434/j.issn.2097-2547.20230320.
LI Quchao,YIN Guodong,YAO Guodong,et al.Research on rapid determination of total bicarbonate and carbonate in CO2 absorption solution by EDTA indirect titration[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):89-95. DOI: 10.12434/j.issn.2097-2547.20230320.
碳捕集、利用与封存(CCUS)技术是减少二氧化碳(CO
2
)排放的有效措施之一,其中化学吸收法应用广泛且技术成熟。在化学吸收法中,用碱性溶液吸收CO
2
后,CO
2
吸收液中存在一定量的碳酸氢根和碳酸根,准确测定CO
2
吸收液中碳酸氢根和碳酸根的总量,可确定CO
2
吸收液的CO
2
吸收量。根据脱硫废水(作为CO
2
吸收液)的水质组分及其复杂性提出了采用EDTA间接滴定法快速测定CO
2
吸收液中碳酸氢根和碳酸根的总量(以碳酸根计,下同)。对碳酸氢根和碳酸根系列标准溶液的测定结果表明,系列标准溶液的标准曲线线性拟合系数均大于0.9993,线性拟合范围为100~2500 mg/L,因此EDTA间接滴定法测定碳酸氢根和碳酸根总量的检测范围为100~2500 mg/L。对实际工程水样的测定结果显示,测定结果的相对标准偏差为0.92%~1.28%(
n
= 5),准确性较好,EDTA间接滴定法测定碳酸氢根和碳酸根总量具有现实可行性。
Carbon capture
utilization and storage (CCUS) technology is one of the effective measures to reduce carbon dioxide (CO
2
) emissions
among which chemical absorption method is widely used and mature technology. In the chemical absorption method
after absorbing CO
2
with alkaline solution
there is a certain amount of bicarbonate and carbonate in the CO
2
absorption solution
and the total amount of bicarbonate and carbonate in the CO
2
absorption solution can be determined accurately. According to the water quality components and complexity of desulfurization wastewater (using as CO
2
absorption solution)
EDTA indirect titration method was proposed to rapidly determine the total amount (measured in carbonate
the same as below) of bicarbonate and carbonate in CO
2
absorption solution. The results of the determination of bicarbonate and carbonate series standard solutions show that the linear fitting coefficients of the standard curves of the series of standard solutions are greater than 0.9993
and the linear fitting range is from 100 mg/L to 2500 mg/L. Therefore
the d
etection range of the total amount of bicarbonate and carbonic acid by EDTA indirect titration is from 100 mg/L to 2500 mg/L. The results of actual engineering water samples show that the relative standard deviation of the measurement results is from 0.92% to 1.28% with
n
= 5
and the accuracy is good. The EDTA indirect titration method is feasible for the determination of bicarbonate and total carbonate.
CO2化学吸收定量检测间接滴定脱硫废水
CO2 chemical absorptionquantitative detectionindirect titrationdesulfurization waste water
熊波, 陈健, 李克兵, 等. 工业排放气二氧化碳捕集与利用技术进展 [J]. 低碳化学与化工, 2023, 48(1): 9-18.
XIONG B, CHEN J, LI K B, et al. Technical progress in carbon dioxide capture and utilization of industrial vent gas [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(1): 9-18.
张嘉伟, 顾文波, 张富龙. 基于化学吸收法的二氧化碳捕集技术研究进展 [J]. 低碳化学与化工, 2023, 48(4): 96-106.
ZHANG J W, GU W B, ZHANG F L. Research progress of carbon dioxide capture technology based on chemical absorption method [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 96-106.
JOSE-LUIS G M, AMMAR E, JENNIE M, et al. Conceptual design of a CO2 capture and utilisation process based on calcium andmagnesium rich brines [J]. Journal of CO2 Utilization, 2018, 27: 161-169.
ZHAO Y Y, WU M F, GUO X F, et al. Thorough conversion of CO2 through two-step accelerated mineral carbonation in the MgCl2-CaCl2-H2O system [J]. Separation and Purification Technology, 2019, 210: 343-354.
中华人民共和国地质矿产部, 中国国家标准化管理委员会. 地下水质检验方法, 滴定法测定碳酸根、重碳酸根和氢氧根: DZ/T 0064.49-1993 [S]. 北京: 中国标准出版社, 1993.
Ministry of Geology and Mineral Resources of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Groundwater quality test method, titration method for the determination of carbonate, bicarbonate and hydroxide: DZ/T 0064.49-1993 [S]. Beijing: Standards Press of China, 1993.
俞凌云, 卢艳青, 安胜波. 碳酸氢根和碳酸根检测方法的研究进展 [J]. 西部皮革, 2010, 32(19): 48-52.
YU L Y, LU Y Q, AN S B. Research progress of bicarbonate and carbonate determination [J]. Westleather, 2010, 32(19): 48-52.
张慧琼, 郭玲. 碳酸钠和碳酸氢钠混合碱滴定曲线变化规律[J]. 海南大学学报(自然科学版), 2001, 17(6): 85-87.
ZHANG H Q, GUO L. Variation of sodium carbonate and sodium bicarbonate mixed alkali titration curve [J]. Natural Science Journal of Hainan University, 2001, 17(6): 85-87.
曹彩虹, 高扬. 电位滴定法在纯碱分析中的应用[J]. 纯碱工业, 2018, (4): 15-17.
CAI C H, GAO Y. Application of potentiometric titration in soda ash analysis [J]. Soda Ash Industry, 2018, (4): 15-17.
詹文毅, 江国庆, 姜国民, 等. 紫外分光光度法直接测定常量硫酸根[J]. 理化检验-化学分册, 2016, 52(2): 159-162.
ZHAN W Y, JIANG G Q, JIANG G M, et al. Direct determination of macro-amounts of sulfate by UV spectrophotometry [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 159-162.
蔡青松, 刘霞, 蒋生祥, 等. 离子色谱法测定油田有色地层水中的碳酸根和碳酸氢根[J]. 分析测试技术与仪器, 2002, 8(3): 165-169.
CAI Q S, LIU X, JIANG S X, et al. Determination of carbonate and bicarbonate in colored formation water in oilfield by ion chromatography [J]. Analysis and Testing Technology and Instrment, 2002, 8(3): 165-169.
战楠, 黄毅, 饶竹, 等. 双电极法现场快速检测地下水和湖水中碳酸氢根和碳酸根[J]. 分析化学, 2016, 44(3): 355-360.
ZHAN N, HUANG Y, RAO Z, et al. The two-electrode method rapidly detects bicarbonate and carbonate in groundwater and lake water on site [J]. Chinese Journal of Analytical Chemistry, 2016, 44(3): 355-360.
国家海洋局, 中国国家标准化管理委员会. 海水冷却水质要求及分析测定方法,第一部分: 钙、镁离子的测定: GB/T 33584.1-2017 [S]. 北京: 中国标准出版社, 2017.
State Oceanic Administration, Standardization Administration of China. Seawater cooling water quality requirements and analysis and determination methods, Part 1: Determination of calcium and magnesium ions: GB/T 33584.1-2017 [S]. Beijing: Standards Press of China, 2017.
SÖHNEL O, MULLIN J W. Precipitation of calcium carbonate [J]. Journal of Crystal Growth, 1982, 60: 239-250.
RAMAKRISHNA C, THENEPALLI T, HUH J H, et al. Precipitated calcium carbonate synthesis by simultaneous injection to produce nanowhisker aragonite [J]. Journal of the Korean Ceramic Society, 2016, 53: 222-226.
MEJRI W, KORCHEF A, TLILI M, et al. Effects of temperature on precipitation kinetics and microstructure of calcium carbonate in the presence of magnesium and sulphate ions [J]. Desalination and Water Treatment, 2014, 52: 4863-4870.
CHEN T Y, HONARPARVAR S, REIBLE D, et al. Thermodynamic modeling of calcium carbonate scale precipitation: Aqueous Na+-Ca2+-Cl--HCO3- -CO32--CO2 system [J]. Fluid Phase Equilibria, 2021, 522: 1-12.
CHEN J, XIANG L. Controllable synthesis of calcium carbonate polymorphs at different temperatures [J]. Powder Technol, 2009, 189: 64-69.
MEJRI W, KORCHEF A, TLILI M M, et al. Effects of temperature on precipitation kinetics and microstructure of calcium carbonate in the presence of magnesium and sulphate ions [J]. Desalin and Water Treat, 2014, 52: 4863-4870.
孙伶俐. 碳酸钙溶解的研究[J]. 浙江化工, 2015, 46(4): 34-38.
SUN L L. Studies of calcium carbonate solubilization [J]. Zhejiang Chemical Industry, 2015, 46(4): 34-38.
MORSE W J, SARVIDSON R, LUTTGE A. Calcium carbonate formation and dissolution [J]. Chemical Reviews, 2007, 107: 342-391.
CHEN T, NEVILLE A, YUAN M. Influence of Mg2+ on CaCO3 formation-bulk precipitation and surface deposition [J]. Chemical Engineering Science, 2006, 61: 5318-5327.
王强, 韦凤密, 李雅, 等. 浓盐水深度处理及零排放资源回收[J]. 净水技术, 2023, 42(3): 127-135.
WANG Q, WEI F M, LI Y, et al. Advanced treatment of concentrated brine and zero discharge resource recovery [J]. Water Purification Technology, 2023, 42(3): 127-135.
CHEN T, NEVILLE A, YUAN M. Assessing the effect of Mg2+ on CaCO3 scale formation-bulk precipitation and surface deposition [J]. Journal of Crystal Growth, 2005, 275: 1341-1347.
罗承源, 刘小乐, 昆姜, 等. 水中钙镁含量测定原理的深入解析及方法改进[J]. 韩山师范学院学报, 2016, 37(6): 93-98.
LUO C Y, LIU X L, JIANG K, et al. In-depth analysis of the principle of calcium and magnesium content determination in water and method improvement [J]. Journal of Hanshan Normal University, 2016, 37(6): 93-98.
刘艳辉, 徐克, 安子韩, 等. 海水淡化石灰石矿化溶解过程模型研究进展[J]. 净水技术, 2021, 40(11): 90-96.
LIU Y H, XU K, AN Z H, et al. Research progress on models of limestone mineralization and dissolution processes in seawater desalination [J]. Water Purification Technology, 2021, 40(11): 90-96.
冶富银, 革海银, 李明, 等. 石灰石-石膏法废水对氨法脱硫硫酸铵结晶影响[J]. 净水技术, 2023, 42(2): 125-131.
YE F Y, GE H Y, LI M, et al. Effect of limestone-gypsum wastewater on crystallization of ammonium sulfate in ammonia desulfurization [J]. Water Purification Technology, 2023, 42(2): 125-131.
RIZZO R, GUPTA S, ROGOWSKA M, et al. Corrosion of carbon steel under CO2 conditions: Effect of CaCO3 on the stability of the FeCO3 protective layer [J]. Corrosion Science, 2019, 162: 108-214.
曹伟新. 掺混倍数对地表水掺混海淡水水质稳定、缓冲能力的影响[J]. 净水技术, 2020, 39(7): 158-166.
CAO W X. Effect of mixing multiples of desalinated seawater by surface water on water quality stability and buffer capacity [J]. Water Purification Technology, 2020, 39(7): 158-166.
0
Views
235
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution