浏览全部资源
扫码关注微信
1.中国石油化工股份有限公司石油化工科学研究院,北京 100083
2.中国石油化工股份有限公司茂名分公司,广东 茂名 525000
3.安徽大学 化学化工学院,安徽 合肥 230601
4.中国科学院 山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
Published:25 February 2024,
Received:19 September 2023,
Revised:26 October 2023,
扫 描 看 全 文
王宪周,张成华,相宏伟.Fe/BN催化剂的制备及其费托合成性能[J].低碳化学与化工,2024,49(02):26-34.
WANG Xianzhou,ZHANG Chenghua,XIANG Hongwei.Preparation of Fe/BN catalysts and their catalytic performance in Fischer-Tropsch synthesis[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):26-34.
王宪周,张成华,相宏伟.Fe/BN催化剂的制备及其费托合成性能[J].低碳化学与化工,2024,49(02):26-34. DOI: 10.12434/j.issn.2097-2547.20230319.
WANG Xianzhou,ZHANG Chenghua,XIANG Hongwei.Preparation of Fe/BN catalysts and their catalytic performance in Fischer-Tropsch synthesis[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):26-34. DOI: 10.12434/j.issn.2097-2547.20230319.
为开发基于高热传导性载体的催化剂,提高费托合成反应性能,以高比表面积的球磨氮化硼(BN)为载体,通过溶剂热法(溶剂热温度分别为120 ℃、160 ℃和200 ℃)制备了系列Fe/BN催化剂(Fe/BN-120、Fe/BN-160和Fe/BN-200),并研究了催化剂对费托合成的催化性能(温度为280 ℃、压力为2.0 MPa、合成气
V
(H
2
):
V
(CO):
V
(Ar) = 16:
8:1且空速为3000 mL/(g·h),以48 h时的反应结果计)。采用N
2
吸/脱附、电感耦合等离子体-原子发射光谱(ICP-AES)、X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线电子能谱(XPS)和H
2
/CO程序升温还原(H
2
/CO-TPR)等对催化剂进行了表征。结果表明,与Fe/BN-120相比,Fe/BN-160、Fe/BN-200中
γ
-Fe
2
O
3
的平均粒径分别由7.2 nm增加至13.6 nm、14.7 nm,同时Fe 2p结合能逐渐向低结合能方向偏移。与Fe/BN-120和Fe/BN-160相比,在电子效应和尺寸效应的作用下,Fe/BN-200的还原、碳化得到明显促进。在费托合成的CO
2
和H
2
O气氛中,还原得到的
α
-Fe、Fe
3
O
4
和球磨氮化硼表面的BO
x
在高温条件下发生反应生成硼酸铁。随着溶剂热温度的升高,催化剂的碳化程度逐渐升高,与Fe/BN-120相比(CO转化率为39.1%、CH
4
选择性为24.3%和C
5+
选择性为37.8%),Fe/BN-200的CO转化率提高至68.9%,CH
4
选择性降至12.9%,C
5+
选择性增加至51.1%。在Fe/BN催化剂上,通过改变溶剂热温度可以调控催化活性和产物分布,这为提高氮化硼负载的Fe基催化剂的费托合成反应性能提供了思路。
In order to develop catalysts based on high thermal conductivity support and improve the performance of Fischer-Tropsch synthesis
ball milling boron nitride (BN) with high specific surface area was used as support to prepare a series of Fe/BN catalysts (Fe/BN-120
Fe/BN-160 and Fe/BN-200) by solvothermal method (solvothermal temperatures are 120 ℃
160 ℃ and 200 ℃
respectively)
and their catalytic performance in Fischer-Tropsch synthesis was studied (temperature of 280 ℃
pressure of 2.0 MPa
V
(H
2
):
V
(CO):
V
(Ar) = 16:8:1 and space velocity of 3000 mL/(g·h) of syngas
measured by the reaction result at 48 h). The catalysts were characterized by N
2
absorption/desorption
inductively coupled plasma-atomic emission spectrometer (ICP-AES)
X-ray diffraction (XRD)
transmission electron microscopy (TEM)
X-ray photoelectron spectroscopy (XPS) and H
2
/CO temperature programmed reduction (H
2
/CO-TPR). The results show that compared with Fe/BN-120
the average particle size of
γ-
Fe
2
O
3
in Fe/BN-160 and Fe/BN-200 increases from 7.2 nm to 13.6 nm and 14.7 nm
respectively
a
nd the binding energy of Fe 2p gradually shifts towards the lower binding energy. Compared with Fe/BN-120 and Fe/BN-160
the reduction and carbonization of Fe/BN-200 are significantly promoted under the action of electronic effect and size effect. In the atmosphere of CO
2
and H
2
O in Fischer-Tropsch
the reduced
α-
Fe and Fe
3
O
4
react with the BO
x
on the surface of ball milling boron nitride under high temperature conditions to produce iron borate. With the increase of solvothermal temperature
the carbonization degree of catalyst increases gradually. Compared with Fe/BN-120 (CO conversion rate is 39.1%
CH
4
selectivity is 24.3%
C
5+
selectivity is 37.8%)
CO conversion rate of Fe/BN-200 increases to 68.9%
CH
4
selectivity decreases to 12.9% and C
5+
selectivity increased to 51.1%. The catalytic activity and product distribution can be regulated by changing the solvothermal temperature on Fe/BN catalyst
which provides a way to improve the performance of Fe-based catalyst supported by boron nitride.
费托合成铁基催化剂氮化硼溶剂热法催化活性
Fischer-Tropsch synthesisiron-based catalystboron nitridesolvothermal methodcatalytic activity
相宏伟, 杨勇, 李永旺. 煤炭间接液化: 从基础到工业化[J]. 中国科学: 化学, 2014, 44(12): 1876-1892.
XIANG H W, YANG Y, LI Y W. Indirect coal-to-liquids technology from fundamental research to commercialization [J]. Scientia Sinica (Chimica), 2014, 44(12): 1876-1892.
O’BRIEN R J , XU L G, SPRICER R L, et al. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts [J]. Catalysis Today, 1997, 36(3): 325-334.
刘润雪, 刘任杰, 徐艳, 等. 铁基费托合成催化剂研究进展[J]. 化工进展, 2016, 35(10): 3169-3179.
LIU R X, LIU R J, XU Y, et al. Recent advances in the development of iron-based catalysts for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Process, 2016, 35(10): 3169-3179.
QING M, YANG Y, WU B S, et al. Modification of Fe-SiO2 interaction with zirconia for iron-based Fischer-Tropsch catalysts [J]. Journal of Catalysis, 2011, 279(1): 111-122.
BU K K, DENG J, ZHANG X Y, et al. Promotional effects of B-terminated defective edges of Ni/boron nitride catalysts for coking- and sintering-resistant dry reforming of methane [J]. Applied Catalysis B: Environmental, 2020, 267: 118692-118702.
GAO L J, FU Q, WEI M M, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells [J]. ACS Catalysis, 2016, 6(10): 6814-6822.
FAN M M, JIMENEZ D J, SHIRODKAR S N, et al. Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation [J]. ACS Catalysis, 2019, 9(11): 10077-10086.
武江红, 薛摇伟, 苏立红, 等. 不同处理方法对氮化硼负载铁基催化剂费托合成性能的影响[J]. 燃料化学学报, 2019, 47(10): 1245-1250.
WU J H, XUE W, SU L H, et al. Effect of tre atment me thod on the performance of boron nitride supported iron catalysts in the Fischer-Tropsch synthesis [J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1245-1250.
CAO Y, MAITARAD P, GAO M, et al. Defect-induced efficient dry reforming of methane over two-dimensional Ni/h-boron nitride nanosheet catalysts [J]. Applied Catalysis B: Environmental, 2018, 238: 51-60.
SHENGJ, LI W C, HE B W, et al. Surface borate-derived highly dispersed and stable metal nanoparticles on nitrogen-vacancy boron nitride support promoting CO methanation [J]. ACS Catalysis. 2023, 13: 9201-9212.
WU J H, WANG L C, LV B L, et al. Facile fabrication of BCN nanosheet-encapsulated nano-iron as highly stable Fischer-Tropsch synthesis catalyst [J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14319-14327.
WU J H, WANG L C, YANG X, et al. Support effect of the Fe/BN catalyst on Fischer-Tropsch performances: Role of the surface B-O defect [J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2805-2810.
徐春凤, 欧阳亮, 张佳, 等. 氮化硼载体对Ru-Ba/BN氨合成催化剂性能的影响[J]. 催化学报, 2010, 31(6): 677-682.
XU C F, OUYANG L, ZHANG J, et al. Effect of boron nitride support on catalytic activity of Ru-Ba/BN for ammonia synthesis [J]. Chinese Journal of Catalysis, 2010, 31(6): 677-682.
WU J C S, CHOU H C. Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2 [J]. Chemical Engineering Journal, 2009, 148: 539-545.
FAN D L, FENG J, LIU J, et al. Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis [J]. Ceramics International, 2014, 42(6): 7155-7163.
WANG X Z, ZHANG C H, CHANG Q, et al. Enhanced Fischer-Tropsch synthesis performances of Fe/h-BN catalysts by Cu and Mn [J]. Catalysis Today, 2020, 343: 91-100.
王宪周. Fe/BN微观结构及其费托合成反应性能的研究[D]. 北京: 中国科学院大学, 2021.
WANG X Z. Study of structural evolution of Fe/BN and its FTS performances [D].Beijing: University of Chinese Academy of Sciences, 2021.
LEE D J, LEE B, PARK K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling [J]. Nano Letters, 2015, 15(2): 1238-1244.
THANGASAMY P, SATHISH M. Dwindling the re-stacking by simultaneous exfoliation of boron nitride and decoration of α-Fe2O3 nanoparticles using a solvothermal route [J]. New Journal of Chemistry, 2018, 42: 5090-5095.
SHUNSUKE S, ASUKA N, KAZUHITO H, et al. First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-phase) [J]. Journal of the American Chemical Society, 2009, 131(51): 18299-18303.
于文广, 张同来, 张建国, 等. 纳米四氧化三铁(Fe3O4)的制备和形貌[J]. 化学进展, 2007, 19(6): 884-892.
YU W G, ZHANG T L, ZHANG J G, et al. The preparation methods of magnetite nanoparticles and their morphology [J]. Process in Chemistry, 2007, 19(6): 884-892.
KHOLLAM Y B, DHAGE S R, POTDAR H S, et al. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders [J]. Materials Letters, 2002, 56(4): 571-577.
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Applied Surface Science, 2008, 254(8): 2441-2449.
LIU Y, LUA F X, TANG Y, et al. Effects of initial crystal structure of Fe2O3 and Mn promoter on effective active phase for syngas to light olefins [J]. Applied Catalysis B: Environmental, 2020, 261: 118219-118229.
PARK J Y, LEE Y J, KHANNA P K, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: Effect of particle size of iron oxide [J]. Journal of Molecular Catalysis A: Chemical, 2010, 323(1): 84-90.
KHODAKOV A Y, GRIBOVAL C A, BECHARA R, et al. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas [J]. Journal of Catalysis, 2002, 206(2): 230-241.
NIU L W, LIU X W, LIU J J, et al. Tuning carburization behaviors of metallic iron catalysts with potassium promoter and CO/syngas/C2H4/C2H2 gases [J]. Journal of Catalysis, 2019, 371: 333-345.
LIU X, ZHAO S, MENG Y, et al. Mössbauer spectroscopy of iron carbides: From prediction to experimental confirmation [J]. Scientific Reports, 2016, 6(1): 26184-26193.
RAUPP G B, DELGASS W N. Mössbauer investigation of supported Fe and FeNi catalysts: II. Carbides formed by Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1979, 58(3): 348-360.
DOUVALIS A P, MOUKARIKA A, BAKAS T, et al. Mössbauer and magnetization studies of Fe3BO5 [J]. Journal of Physics: Condensed Matter, 2002, 14(12): 3303-3320.
DONG J H, FU Q, LI H B, et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets [J]. Journal of the American Chemical Society, 2020, 142: 11167-11174.
MITOV I, CHERKEZOVA Z Z, MITROV V, et al. Mechanochemical synthesis of ferroferriborate (vonsenite, Fe3BO5) and magnesium ferroferriborate (ludwigite, Fe2MgBO5) [J]. Journal of Alloys and Compounds, 1999, 289(1): 55-65.
LIU Y, PENG S, DING Y, et al. Synthesis and characterization of ferroferriborate (Fe3BO5) nanorods [J]. Advanced Functional Materials, 2009, 19: 3146-3150.
定明月, 杨勇, 相宏伟, 等. 费托合成Fe基催化剂中Fe物相与活性的关系[J]. 催化学报, 2010, 31(9): 1145-1150.
DING M Y, YANG Y, XIANG H W, et al. Relationship between Iron phase and activity of iron-based Fischer-Tropsch synthesis catalyst [J]. Chinese Journal of Catalysis, 2010, 31(9): 1145-1150.
BUKUR D B, NOWICKI L, MANNE R K, et al. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: II. Reaction studies [J]. Journal of Catalysis, 1995, 155(2): 366-375.
WAN H L, QING M, WANG H, et al. Promotive effect of boron oxide on the iron-based catalysts for Fischer-Tropsch synthesis [J]. Fuel, 281(1): 118714-118722.
0
Views
191
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution