浏览全部资源
扫码关注微信
航天长征化学工程股份有限公司,北京 101111
Published:25 September 2024,
Received:12 September 2023,
Revised:30 October 2023,
移动端阅览
徐京辉,王宇超,殷雨田等.工业电解海水制氢技术及电极材料研究进展[J].低碳化学与化工,2024,49(09):72-81.
XU Jinghui,WANG Yuchao,YIN Yutian,et al.Research progress of industrial seawater electrolysis hydrogen production technologies and electrode materials[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):72-81.
徐京辉,王宇超,殷雨田等.工业电解海水制氢技术及电极材料研究进展[J].低碳化学与化工,2024,49(09):72-81. DOI: 10.12434/j.issn.2097-2547.20230310.
XU Jinghui,WANG Yuchao,YIN Yutian,et al.Research progress of industrial seawater electrolysis hydrogen production technologies and electrode materials[J].Low-carbon Chemistry and Chemical Engineering,2024,49(09):72-81. DOI: 10.12434/j.issn.2097-2547.20230310.
电解海水制氢原料来源广泛,可与海洋新能源有效耦合降低远海电力成本,已成为工业制氢行业的热点。然而,电解海水制氢过程中,Mg
2+
和Ca
2+
等沉积以及氯化物对电解槽的腐蚀阻碍了电解海水制氢技术的规模化应用。因此,改进制氢技术和开发新电极材料,以降低海水中杂质的影响成为了电解海水制氢技术的研发重点。首先,分析了海水主要成分及其对电解海水系统性能和寿命的影响,讨论了不同电解海水制氢技术的优劣势和研究进展,认为电解海水制氢技术尚以海水纯化后制氢为主。然后,总结了电解海水电极材料,包括贵金属材料、过渡金属化合物催化材料和新结构材料,其中过渡金属化合物催化材料具有良好的发展前景。最后,讨论了电解海水制氢技术工业化应用面临的挑战和前景,指出结合高效长寿命过渡金属化合物催化材料研究成果以及海水纯化后制氢技术,是未来一段时期电解海水的发展方向。
The seawater electrolysis for hydrogen production has a wide range of raw materials
which can effectively couple with marine new energy to reduce the cost of offshore electricity
and has become a hot topic in the hydrogen production industry. However
the deposition of Mg
2+
and Ca
2+
as well as the corrosion of chlorides on the electrolysis cell
hinder the large-scale application of seawater electrolysis hydrogen production technologies. Therefore
improving hydrogen production technologies and developing new electrode materials to reduce the impact of impurities in seawater have become the focus of res
earch and development for seawater electrolysis hydrogen production. Firstly
the main components of seawater and their impacts on the performance and lifespan of seawater electrolysis systems were analyzed. The advantages and disadvantages of different electrolysis seawater hydrogen production technologies were discussed
as well as research progress. It is believed that electrolysis seawater hydrogen production technologies still mainly rely on hydrogen production after seawater purification. Then
the electrode materials for seawater electrolysis were summarized
including precious metal materials
transition metal compound catalytic materials
and new structural materials. Among them
transition metal compound catalytic materials have good development prospects. Finally
the challenges and prospects faced by the industrial application of seawater electrolysis hydrogen production technologies were discussed
and it is pointed out that combining the research results of efficient and long-life transition metal compound catalytic materials
as well as the hydrogen production technologies after seawater purification
will be the development direction of seawater electrolysis in the future.
电解海水氢能制氢技术电极材料
seawater electrolysishydrogen energyhydrogen production technologyelectrode materials
中华人民共和国国家发展和改革委员会. 2022年我国可再生能源发展情况[EB/OL]. (2023-02-15)[2023-09-12]. https://www.ndrc gov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.htmlhttps://www.ndrcgov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.html.
National Development and Reform Commission of the PRC. Development of renewable energy in China 2022 [EB/OL]. (2023-02-15)[2023-09-12]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.htmlhttps://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.html.
姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China [J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535.
孙丽平, 方敏, 宋子恒, 等. 我国太阳能资源分析及利用潜力研究[J]. 能源科技, 2022, 20(5): 9-14.
SUN L P, FANG M, SONG Z H, et al. Analysis of solar energy resources and research on investment potential in China [J]. Energy Science and Technology, 2022, 20(5): 9-14.
界面新闻. 海上光伏能否成为下一个蓝海?海上光伏发展存在哪些技术难题? [EB/OL]. (2022-05-11) [2023-09-12]. https://www.jiemian.com/article/7448947.htmlhttps://www.jiemian.com/article/7448947.html.
Jiemian News. Can offshore photovoltaics become the next blue ocean? What are the technical challenges in the development of offshore photovoltaics? [EB/OL].(2022-05-11) [2023-09-12]. https://www.jiemian.com/article/7448947.htmlhttps://www.jiemian.com/article/7448947.html.
雒德宏. 我国海上风电发展现状及对策建议[J]. 水电与新能源, 2022, 36(11): 76-78.
LUO D H. Current situation and suggestion of offshore wind power development in China [J]. Hydrogen Power and New Energy, 2022, 36(11): 76-78.
许维凯. 海上风电发展趋势分析与探讨[J]. 资源节约与环保, 2023, (1): 140-143.
XU W K. Discussion on the development trend of offshore wind power [J]. Resource Conservation and Environmental Protection, 2023, (1): 140-143.
FRANCO B A, BAPTISTA P, NETO R C, et al. Assessment of offloading pathways for wind-powered offshore hydrogen production: Energy and economic analysis [J]. Applied Energy, 2021, 286: 116553.
王峰, 逯鹏, 张清涛, 等. 海上风电制氢发展趋势及前景展望[J]. 综合智慧能源, 2022, 44(5): 41-48.
WANG F, LU P, ZHANG Q T, et al. Development trend and prospects of hydrogen production from offshore wind power [J]. Integrated Intelligent Energy, 2022, 44(5): 41-48.
刘佳. 基于海上风电的海上制氢平台方案研究[J]. 科学技术创新, 2023, (4): 5-9.
LIU J. Research on offshore hydrogen production platform based on offshore wind power [J]. Scientific and Technological Innovation, 2023, (4): 5-9.
张岑, 魏华, 庄妍, 等. 海上风电制氢经济评价模型及关键影响参数[J]. 天然气工业, 2023, 43(2): 146-154.
ZHANG C, WEI H, ZHUANG Y, et al. Economic evaluation model of offshore wind to hydrogen and its key influence parameters [J]. Natural Gas Industry, 2023, 43(2): 146-154.
董辉, 葛维春, 张诗钽, 等. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879.
DONG H, GE W C, ZHANG S T, Set al. Summary of differences between hydrogen production from offshore wind power [J]. Power Generation Technology, 2022, 43(6): 869-879.
滕秀英, 王子玉, 贾永刚, 等.天然海水环境下离子浓度对MICP反应的影响[J/OL]. 土木与环境工程学报(中英文), 1-10[2024-03-05]. http://kns.cnki.net/kcms/detail/50.1218.TU.20230325.1928.002.htmlhttp://kns.cnki.net/kcms/detail/50.1218.TU.20230325.1928.002.html.
TENG X Y, WANG Z Y, JIA Y G, et al. Effect of ion concentration on MICP reaction in natural seawater environment [J/OL]. Journal of Civil and Environment Engineering, 1-10[2024-03-05]. http://kns.cnki.net/kcms/detail/50.1218.TU.20230325.1928.002.htmlhttp://kns.cnki.net/kcms/detail/50.1218.TU.20230325.1928.002.html.
XIE H P, ZHAO Z Y, LIU T, et al. A membrane-based seawater electrolyser for hydrogen generation [J]. Nature, 2022, 612(7941): 673-678.
LIU Z, HAN B B, LU Z Y, et al. Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells [J]. Applied Energy, 2021, 300: 117439.
SUN H, SUN J K, SONG Y Y, et al. Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis [J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22061.
HEGNER F S, GARCÉS-PINEDA F A, GONZÁLEZ-COBOS J, et al. Understanding the catalytic selectivity of cobalt hexacyanoferrate toward oxygen evolution in seawater electrolysis [J]. ACS Catalysis, 2021, 11(21): 13140.
KIRK D W, LEDAS A E. Precipitate formation during sea water electrolysis [J]. International Journal of Hydrogen Energy, 1982, 7(12): 925-932.
LU X Y, PAN J, LOVELL E, et al. A sea-change: Manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater [J]. Energy & Environmental Science, 2018, 11(7): 1898-1910.
GAO F Y, YU P C, GAO M R. Seawater electrolysis technologies for green hydrogen production: Challenges and opportunities [J]. Current Opinion in Chemical Engineering, 2022, 36: 100827.
GUO J X, ZHENG Y, HU Z P, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst [J]. Nature Energy, 2023, 8(3): 264-272.
ASGHARI E, ABDULLAH M I, FOROUGHI F, et al. Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective [J]. Current Opinion in Electrochemistry, 2022, 31: 100879.
SONG S W, WANG Y H, TIAN X Q, et al. S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis [J]. Journal of Colloid and Interface Science, 2023, 633: 668-678.
BANIASADI E, DINCER I, NATERER G F. Electrochemical analysis of seawater electrolysis with molybdenum-oxo catalysts [J]. International Journal of Hydrogen Energy, 2013, 38(6): 2589-2595.
OH B S, OH S G, HWANG Y Y, et al. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination [J]. Science of the Total Environment, 2010, 408(23): 5958-5965
LYU X, BAI Y C, LI J L, et al. Investigation of oxygen evolution reaction with 316 and 304 stainless-steel mesh electrodes in natural seawater electrolysis [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109667.
BENNETT J E. Electrodes for generation of hydrogen and oxygen from seawater [J]. International Journal of Hydrogen Energy, 1980, 5(4): 401-408.
PARK Y S, LEE J, JANG M J, et al. High-performance anion exchange membrane alkaline seawater electrolysis [J]. Journal of Materials Chemistry A, 2021, 9(15): 9586-9592.
TONG W M, FORSTER M, DIONIGI F, et al. Electrolysis of low-grade and saline surface water [J]. Nature Energy, 2020, 5(5): 367377.
LYU X, LI J L, JAFTA C J, et al. Investigation of oxygen evolution reaction with Ni foam and stainless-steel mesh electrodes in alkaline seawater electrolysis [J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108486.
KUANG Y, KENNEY M J, MENG Y T, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels [J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6624-6629.
邱丽娜, 张玮玮, 弓爱君, 等. 腐蚀微生物种类及腐蚀机理研究进展[J]. 工程科学学报, 2023, 45(6): 927-940.
QIU L L, ZHANG W W, GONG A J, et al. Species of corrosive microbes and corrosion mechanisms [J]. Chinese Journal of Engineering, 2023, 45(6): 927-940.
FARRÀS P, STRASSER P, COWAN A J. Water electrolysis: Direct from the sea or not to be? [J]. Joule, 2021, 5(8): 1921-1923.
HAUSMANN J N, SCHLÖGL R, MENEZES P W, et al. Is direct seawater splitting economically meaningful? [J]. Energy & Environmental Science, 2021, 14(7): 3679-3685.
JIA X, KANG H J, HOU G Y, et al. Coupling ferrocyanide-assisted PW/PB redox with efficient direct seawater electrolysis for hydrogen production [J]. ACS Catalysis, 2023, 13(6): 3692-3701.
SUN F, QIN J S, WANG Z Y, et al. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation [J]. Nature Communications, 2021, 12(1): 4182.
LINDQUIST G A, XU Q, OENER S Z, et al. Membrane electrolyzers for impure-water splitting [J]. Joule, 2020, 4(12): 2549-2561.
张涛, 刘一蒲, 叶齐通, 等. 工业级碱性海水电解: 近期进展和展望[J]. 电化学, 2022, 28(10): 1-18.
ZHANG T, LIU Y P, YE Q T, et al. Alkaline seawater electrolysis at industrial level: Recent progress and perspective [J]. Electrochem, 2022, 28(10): 1-18.
LUO X C, WU A Q, SANG J K, et al. The properties of the fuel electrode of solid oxide cells under simulated seawater electrolysis [J]. International Journal of Hydrogen Energy, 2023, 48(28): 10359-10367.
DIONIGI F, REIER T, PAWOLEK Z, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis [J]. ChemSusChem, 2016, 9(9): 962-972.
SONG H J, YOON H, JU B, et al. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1-xFexP2O7 nanoparticles for alkaline seawater electrolysis [J]. ACS Catalysis, 2020, 10(1): 702-709.
HE T T, LIU Q F, FAN H F, et al. Exploring the effect of ion concentrations on the electrode activity and stability for direct alkaline seawater electrolysis [J]. International Journal of Hydrogen Energy, 2023. 48(51): 19385-19395.
ZHAI X J, YU Q P, CHI J Q, et al. Accelerated dehydrogenation kinetics through Ru, Fe dual-doped Ni2P as bifunctional electrocatalyst for hydrazine-assisted self-powered hydrogen generation [J]. Nano Energy, 2023, 105: 108008.
ZHAO H, LU D, WANG J R, et al. Raw biomass electroreforming coupled to green hydrogen generation [J]. Nature Communication, 2021, 12(1): 2008.
YANG Y Y, ZOU R, GAN J Y, et al. Integrating electrocatalytic seawater splitting and biomass upgrading via bifunctional nickel cobalt phosphide nanorods [J]. Green Chemistry, 2023, 25(10): 4104-4112.
SONG Z H, PAN H, WAN G C, et al. Enhancing durability of solid oxide cells for hydrogen production from seawater by designing nano-structured Sm0.5Sr0.5Co3-δ infiltrated air electrodes [J]. International Journal of Hydrogen Energy, 2023. 48(70): 27095-27104.
TONG X F, OVTAR S, BRODERSEN K, et al. A 4 × 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production [J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25996-26004.
HU H S, ZHANG Z R, ZHANG Y W, et al. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production [J]. Energy & Environmental Science, 2023, 16(10): 4584-4592.
YOU H H, WU D S, SI D H, et al. Monolayer niir-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting [J]. Journal of the American Chemical Society, 2022, 144(21): 9254-9263.
TIAN X L, TANG H B, LUO J M, et al. High-performance core-shell catalyst with nitride nanoparticles as a core: Well-defined titanium copper nitride coated with an atomic pt layer for the oxygen reduction reaction [J]. ACS Catalysis, 2017, 7(6): 3810-3817.
WANG X, HAN X, DU R F, et al. Cobalt molybdenum nitride-based nanosheets for seawater splitting [J]. ACS Applied Materials & Interfaces, 2022, 14(37): 41924-41933.
LI R P, LI Y Q, YANG P X, et al. Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis [J]. Applied Catalysis B: Environmental, 2022, 318: 121834.
YANG T, XU Y S, LV H H, et al. Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(38): 13106-13113.
CHANG J F, WANG G Z, YANG Z Z, et al. Dual-doping and synergism toward high-performance seawater electrolysis [J]. Advanced Materials, 2021, 33(33): 2101425.
FENG S Y, YU Y H, LI J, et al. Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides [J]. Catalysis Communications, 2022, 162: 106382.
ZHU J W, CHI J Q, CUI T, et al. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density [J]. Applied Catalysis B: Environmental, 2023, 328: 122487.
ZENG Y T, XU M Y, WANG T, et al. Ru-decorated cobalt-iron oxide nanosheet arrays derived from MOF and LDH double-precursors for overall water splitting in alkali and seawater [J]. Electrochimica Acta, 2023, 444: 142004.
WANG M, ZHANG L, HE Y J, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting [J]. Journal of Materials Chemistry A, 2021, 9(9): 5320-5363.
YU L, ZHU Q, SONG S W, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis [J]. Nature Communications, 2019, 10(1): 5106.
SUN J P, ZHANG Z S, MENG X C. Low-Pt supported on MOF-derived Ni(OH)2 with highly-efficiently electrocatalytic seawater splitting at high current density [J]. Applied Catalysis B: Environmental, 2023, 331: 122703.
FAN J L, FU C Y, LIANG R K, et al. Mild construction of “Midas Touch” metal-organic framework-based catalytic electrodes for highly efficient overall seawater splitting [J]. Small, 2022, 18(47): 2203588.
ZHANG B S, XU W W, LIU S, et al. Enhanced interface interaction in Cu2S@Ni core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis [J]. Journal of Power Sources, 2021, 506: 230235.
REN J T, CHEN L, TIAN W W, et al. Rational synthesis of core‐shell‐structured nickel sulfide‐based nanostructures for efficient seawater electrolysis [J]. Small, 2023: 2300194.
WU L B, YU L, MCELHENNY B, et al. Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis [J]. Applied Catalysis B: Environmental, 2021, 294: 120256.
WANG S R, WANG M M, LIU Z, et al. Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis [J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15250-15258.
TRAN N Q, LE B T N, LE T N M, et al. Coupling amorphous Ni hydroxide nanoparticles with single-atom Rh on Cu nanowire arrays for highly efficient alkaline seawater electrolysis [J]. Journal of Physical Chemistry Letters, 2022, 13(34): 8192-8199.
WEN N, XIA Y G, WANG H H, et al. Large‐scale synthesis of spinel NixMn3-xO4 solid solution immobilized with iridium single atoms for efficient alkaline seawater electrolysis [J]. Advanced Science, 2022, 9(16): 2200529.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution