浏览全部资源
扫码关注微信
1.中国石油集团安全环保技术研究院有限公司,北京 102206
2.北京化工大学 化学工程学院,北京 100029
Published:25 July 2024,
Received:01 September 2023,
Revised:23 October 2023,
扫 描 看 全 文
赵兴雷,李璐蕊,叶舣等.CO2捕集中有机胺吸收剂的金属腐蚀研究进展[J].低碳化学与化工,2024,49(07):34-41.
ZHAO Xinglei,LI Lurui,YE Yi,et al.Research progress on metal corrosion of organic amine absorbents for CO2 capture[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):34-41.
赵兴雷,李璐蕊,叶舣等.CO2捕集中有机胺吸收剂的金属腐蚀研究进展[J].低碳化学与化工,2024,49(07):34-41. DOI: 10.12434/j.issn.2097-2547.20230294.
ZHAO Xinglei,LI Lurui,YE Yi,et al.Research progress on metal corrosion of organic amine absorbents for CO2 capture[J].Low-carbon Chemistry and Chemical Engineering,2024,49(07):34-41. DOI: 10.12434/j.issn.2097-2547.20230294.
通过溶剂法进行CO
2
捕集具有技术成熟、成本低的优点,被广泛使用。有机胺作为常用的吸收剂,具有吸收速率快、吸收容量大等优点,但是由于有机胺与CO
2
发生化学反应后,溶液具有腐蚀性,导致设备管线被腐蚀。综述了有机胺溶液的腐蚀机理,其中氢化胺离子、碳酸氢根离子以及水分子是主要的氧化剂,为腐蚀的发生提供条件。探讨了有机胺溶液的种类和浓度、CO
2
负载量、温度、O
2
含量以及降解产物等因素对溶液腐蚀性的影响,其中CO
2
负载量和温度是影响溶液腐蚀性的主要因素。归纳了采用无机和有机类缓蚀剂、调节溶液pH值和使用不锈钢材料等缓蚀方法,针对胺溶液的有机类缓蚀剂更值得关注。提出了未来缓蚀技术的发展方向,需开发新型缓蚀剂并与耐腐蚀材料相结合,可为深入研究及解决有机胺溶液的腐蚀问题提供参考。
The solvent method for CO
2
capture has the advantages of mature technology and low cost
and is widely used. As commonly used absorbents
organic amines have the advantages of fast absorption rate and large absorption capacity. However
due to the chemical reaction betwe
en organic amines and CO
2
the solution becomes corrosive
resulting in corrosion of equipment pipelines. The corrosion mechanism of organic amine solutions was reviewed. Hydrogenated amine ions
bicarbonate ions and water molecules are the main oxidants
which provide conditions for the occurrence of corrosion. The effects of the types and concentrations of organic amine solution
CO
2
loadings
temperatures
O
2
content and degradation products on the corrosiveness of the solution were discussed. Among them
CO
2
loadings and temperatures are the main factors. The methods of using inorganic and organic corrosion inhibitors
adjusting the pH value of the solution and using stainless steel materials were summarized. The organic corrosion inhibitors for amine solutions are more worthy value of attention. The development direction of future corrosion inhibition technology was put forward. It is necessary to develop new corrosion inhibitors and combine them with corrosion resistant materials
which can provide a reference for further research and solving the corrosion problem of organic amine solutions.
CO2捕集有机胺吸收剂腐蚀机理缓蚀技术
CO2 captureamine absorbentcorrosion mechanismcorrosion inhibition technology
EDENHOFER O, PICHS-MADRUGA R, SOKONA Y. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. IPCC, 2014.
邬高翔, 田瑞. 二氧化碳捕集技术研究进展[J]. 云南化工, 2020, 47(4): 22-23.
WU Y X, TIAN R. Research progress of carbon dioxide capture technology [J]. Yunnan Chemical Technology, 2020, 47(4): 22-23.
KAHYARIAN A, BROWN B, NESIC S. Mechanism of CO2 corrosion of mild steel: A new narrative [C]//NACE CORROSION. NACE, 2018.
ZHAO F, CUI C X, DONG S L, et al. An overview on the corrosion mechanisms and inhibition techniques for amine-based post-combustion carbon capture process [J]. Separation and Purification Technology, 2022, 304: 122091.
LIANG Z W, FU K Y, IDEM R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents [J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288.
FYTIANOS G, UCAR S, GRIMSTVEDT A, et al. Corrosion and degradation in MEA based post-combustion CO2 capture [J]. International Journal of Greenhouse Gas Control, 2016, 46: 48-56.
SZABÓ S. Metal corrosion and its relation to other fields of science [J]. International Journal of Corrosion and Scale Inhibition, 2015, 4(1): 35-48.
KITTEL J, FLEURY E, VUILLEMIN B, et al. Corrosion in alkanolamine used for acid gas removal: From natural gas processing to CO2 capture [J]. Materials and Corrosion, 2012, 63(3): 223-230.
HERNANDEZ J, MUÑOZ A, GENESCA J. Formation of iron-carbonate scale-layer and corrosion mechanism of API X70 pipeline steel in carbon dioxide-saturated 3% sodium chloride [J]. Afinidad, 2012, 69(560): 251-258.
KAHYARIAN A, ACHOUR M, NESIC S. CO2 corrosion of mild steel [M]//A M EL S. Trends in Oil and Gas Corrosion Research and Technologies. UK: Woodhead Publishing, 2017: 149-190.
KITTEL J, GONZALEZ S. Corrosion in CO2 post-combustion capture with alkanolamines—A review [J]. Oil & Gas Science and Technology—Revue de l IFP, 2013, 69(5): 915-929.
SADEEK S A, WILLIAMS D R, CAMPBELL K L S. Using sodium thiosulphate for carbon steel corrosion protection against monoethanolamine and methyldiethanolamine [J]. International Journal of Greenhouse Gas Control, 2018, 74: 206-218.
MAZARI S A, GHALIB L, SATTAR A, et al. Review of modelling and simulation strategies for evaluating corrosive behavior of aqueous amine systems for CO2 capture [J]. International Journal of Greenhouse Gas Control, 2020, 96: 103010.
CAMPBELL K L S, ZHAO Y, HALL J J, et al. The effect of CO2-loaded amine solvents on the corrosion of a carbon steel stripper [J]. International Journal of Greenhouse Gas Control, 2016, 47: 376-385.
LI X Q, PEARSON P, YANG Q, et al. A study of designer amine 4-amino-1-propyl-piperidine against the corrosion of carbon steel for application in CO2 capture [J]. International Journal of Greenhouse Gas Control, 2020, 94: 102929.
GHALIB L, ABDULKAREEM A, ALI B S, et al. Modeling the rate of corrosion of carbon steel using activated diethanolamine solutions for CO2 absorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2099-20110.
ZHENG L, MATIN N S, LANDON J, et al. CO2 loading-dependent corrosion of carbon steel and formation of corrosion products in anoxic 30wt% monoethanolamine-based solutions [J]. Corrosion Science, 2016, 102: 44-54.
GUNASEKARAN P, VEAWAB A, AROONWILAS A. Corrosivity of amine-based absorbents for CO2 capture [J]. Energy Procedia, 2017, 114: 2047-2054.
KITTEL J, FLEURY E, VUILLEMIN B, et al. Corrosion in alkanolamine used for acid gas removal: From natural gas processing to CO2 capture [J]. Materials and Corrosion, 2012, 63(3): 223-230.
LIU C T, FISCHER K B, ROCHELLE G T. Corrosion by aqueous piperazine at 40~150 ℃ in pilot testing of CO2 capture [J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7189-7197.
PANAHI H, ESLAMI A, GOLOZAR M. Corrosion and stress corrosion cracking initiation of grade 304 and 316 stainless steels in activated Methyl Diethanol Amine (aMDEA) solution [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 106-112.
DA SILVA E F, LEPAUMIER H L N, GRIMSTVEDT A, et al. Understanding 2-ethanolamine degradation in postcombustion CO2 capture [J]. Industrial & Engineering Chemistry Research, 2012, 51(41): 13329-13338.
FYTIANOS G, GRIMSTVEDT A, KNUUTILA H, et al. Effect of MEA’s degradation Products on corrosion at CO2 capture plants [J]. Energy Procedia, 2014, 63: 1869-1875.
XIANG Y, CHOI Y S, YANG Y, et al. Corrosion of carbon steel in MDEA-based CO2 capture plants under regenerator conditions: Effects of O2 and heat-stable salts [J]. Corrosion, 2015, 71(1): 30-37.
LIU C T, FISCHER K B, ROCHELLE G T. Corrosion of carbon steel by aqueous piperazine protected by FeCO3 [J]. International Journal of Greenhouse Gas Control, 2019, 85: 23-29.
陆胤君, 陆诗建, 郭伯文, 等. 烟气CO2捕集吸收剂腐蚀性分析与缓蚀剂开发[J].天然气化工—C1化学与化工, 2021, 46(5): 102-105+111.
LU Y J, LU S J, GUO B W, et al. Corrosiveness analysis and corrosion inhibitor development of CO2 capture absorbent for flue gas [J]. Natural Gas Chemical Industry, 2021, 46(5): 102-105+111.
SKOUNTZOS E, PRICE C A, ALSALEM M M, et al. Use of copper carbonate as corrosion inhibitor for carbon steel in post combustion carbon capture [J]. Carbon Capture Science & Technology, 2023, 6: 100095.
SADEEK S A, WILLIAMS D R, CAMPBELL K L S. Using sodium thiosulphate for carbon steel corrosion protection against monoethanolamine and 2-amino-2-methyl-1-propanol [J]. International Journal of Greenhouse Gas Control, 2018, 78: 125-134.
EMORI W, JIANG S L, DUAN D L, et al. Corrosion behavior of carbon steel in amine-based CO2 capture system: Effect of sodium sulfate and sodium sulfite contaminants [J]. Materials and Corrosion, 2017, 68(6): 674-682.
王梦, 张静. 二氧化碳腐蚀缓蚀剂及其缓蚀机理的研究进展[J]. 表面技术, 2018, 47(10): 208-215.
WANG M, ZHANG J. Research progress on carbon dioxide corrosion inhibitor and its inhibition mechanism [J]. Surface Technology, 2018, 47(10): 208-215.
UDAYAPPAN B, VEAWAB A. Performance analysis of methionine as an environmentally friendly corrosion inhibitor for carbon steel in the amine based carbon capture process [J]. International Journal of Greenhouse Gas Control, 2022, 114: 103565.
ZHENG L F, LANDON J, KOEBCKE N C, et al. Suitability and stability of 2-mercaptobenzimidazole as a corrosion inhibitor in a post-combustion CO2 capture system [J]. Corrosion, 2015, 71(6): 692-702.
ACIDI A, HASIB UR RAHMAN M, LARACHI F, et al. Ionic liquids [EMIM][BF4], [EMIM][Otf] and [BMIM][Otf] as corrosion inhibitors for CO2 capture applications [J]. Korean Journal of Chemical Engineering, 2014, 31(6): 1043-1048.
ZHENG L F, LANDON J, MATIN N S,et al. Corrosion mitigation via a pH stabilization method in monoethanolamine-based solutions for post-combustion CO2 capture [J]. Corrosion Science, 2016, 106: 281-292.
STERGIOUDI F, BAXEVANI A, FLOROU C, et al. Corrosion behavior of stainless steels in CO2 absorption process using aqueous solution of monoethanolamine (MEA) [J]. Corrosion and Materials Degradation, 2022, 3(3): 422-438.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution