浏览全部资源
扫码关注微信
中石化南京化工研究院有限公司,江苏 南京 210048
Published:25 February 2024,
Received:16 July 2023,
Revised:06 September 2023,
扫 描 看 全 文
彭洁,李曜,储政等.催化剂中金属与载体相互作用的表征研究进展[J].低碳化学与化工,2024,49(02):1-9.
PENG Jie,LI Yao,CHU Zheng,et al.Research progress in characterization of metal-support interactions in catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):1-9.
彭洁,李曜,储政等.催化剂中金属与载体相互作用的表征研究进展[J].低碳化学与化工,2024,49(02):1-9. DOI: 10.12434/j.issn.2097-2547.20230246.
PENG Jie,LI Yao,CHU Zheng,et al.Research progress in characterization of metal-support interactions in catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(02):1-9. DOI: 10.12434/j.issn.2097-2547.20230246.
负载型催化剂是低碳催化转化领域重要的一类催化剂,金属-载体相互作用广泛存在于负载型催化剂中。这种相互作用会显著影响催化剂的物理结构和电子结构,进而既可调控活性金属的催化活性和稳定性,又可达到金属-载体协同催化的效果,促进低碳烃类、醇类等的选择性催化转化。因此,研究金属-载体相互作用对催化剂优化和催化机理的深入探究都有十分重要的意义。基于非原位和原位表征技术,从静态性质和动态性质两个方面,综述了金属-载体相互作用的表征研究进展。通过非原位表征技术,如高分辨电镜、振动光谱、X射线谱学和电子顺磁共振谱等,可以表征金属与载体之间的物质输运、电荷偏移等情况;通过原位表征技术,如原位红外、原位X射线谱学和原位电子顺磁共振等,可以表征金属-载体相互作用的强弱变化、反应过程中催化剂的界面结构和组分变化以及动态电荷转移的过程等。
Supported catalysts are crucial in low-carbon catalytic conversion
and metal-support interactions is widely present in supported catalysts. These interactions play a vital role in determining the physical and electronic structure of these catalysts
and not only regulate the catalytic activity and stability of active metals but also enable the synergistic catalysis effect between metals and supports
thus promoting the selective catalytic conversion of low-carbon hydrocarbons
alcohols and other compounds. Hence
understanding the metal-support interactions is essential for the optimization of catalysts and exploring catalytic mechanisms deeply. The research progress in characterization of metal-support interactions using ex situ and in situ techniques were discussed. Ex situ characterization techniques
such as high-resolution electron microscopy
vibrational spectroscopy
X-ray spectroscopy and electron par
amagnetic resonance spectroscopy can investigate mass transport and charge transfer between metals and supports. In situ characterization techniques
such as in situ infrared spectroscopy
in situ
X-ray spectroscopy and in situ
electron paramagnetic resonance can characterize the strength changes of metal-support interactions
changes of interface structures and compositions of catalysts during reactions
as well as the dynamic charge transfer processes.
金属-载体相互作用表征技术静态性质动态性质
metal-support interactionscharacterization techniquesstatic propertiesdynamic properties
王晶, 姚楠. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
WANG J, YAO N. Ni-based catalysts for syngas methanation reaction [J]. Progress in Chemistry, 2017, 29(12): 1509-1517.
史健, 祝星, 李孔斋, 等. 甲烷干重整及金属-载体相互作用[J]. 石油学报(石油加工), 2020, 36(6): 1407-1418.
SHI J, ZHU X, LI K Z, et al. Dry reforming of methane and metal-support interactions [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1407-1418.
王珍. 金属-载体相互作用对多相催化反应的影响[J]. 广州化工, 2013, 41(24): 20-23.
WANG Z. The effect of strong metal-support interaction on heterogeneous catalysis [J]. Guangzhou Chemical Industry, 2013, 41(24): 20-23.
娄舒洁, 刘克峰, 肖海成, 等. 费托合成钌基催化剂研究进展[J]. 天然气化工—C1化学与化工, 2021, 46(2): 1-9+52.
LOU S J, LIU K F, XIAO H C, et al. Review of Ru-based Fischer-Tropsch synthesis catalyst [J]. Natural Gas Chemical Industry, 2021, 46(2): 1-9+52.
杨林颜, 郭宇鹏, 李正甲, 等. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
YANG L Y, GUO Y P, LI Z J, et al. Modulation of surface and interface properties of cobalt-based Fischer-Tropsch synthesis catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide [J]. Journal of the American Chemical Society, 1978, 100(1): 170-175.
TAUSTER S J, FUNG S C. Strong metal-support interactions: Occurrence among the binary oxides of groups IIA-VB [J]. Journal of Catalysis, 1978, 55(1): 29-35.
LIU J. Advanced electron microscopy of metal-support interactions in supported metal catalysts [J]. ChemCatChem, 2011, 3(6): 934-948.
BABUCCI M, GUNTIDA A, GATES B C. Atomically dispersed metals on well-defined supports including zeolites and metal-organic frameworks: Structure, bonding, reactivity, and catalysis [J]. Chemical Reviews, 2020, 120(21): 11956-11985.
PU T C, ZHANG W H, ZHU M H. Engineering heterogeneous catalysis with strong metal-support interactions: Characterization, theory and manipulation [J]. Angewandte Chemie International Edition, 2023, 62(4): e202212278.
LI Z, WU R, ZHAO L, et al. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives [J]. Nano Research, 2021, 14(11): 3795-3809.
DU X, TANG H, QIAO B. Oxidative strong metal-support interactions [J]. Catalysts, 2021, 11(8): 896.
LUO Z X, ZHAO G Q, PAN H G, et al. Strong metal-support interaction in heterogeneous catalysts [J]. Advanced Energy Materials, 2022, 12(37): 2201395.
VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity [J]. Nature Catalysis, 2019, 2(11): 955-970.
CHEN J, ZHANG Y T, ZHANG Z H, et al. Metal-support interactions for heterogeneous catalysis: Mechanisms, characterization techniques and applications [J]. Journal of Materials Chemistry A, 2023, 11(16): 8540-8572.
SINGH A K, PANDE N K, BELL A T. Electron microscopy study of the interactions of rhodium with titania [J]. Journal of Catalysis, 1985, 94(2): 422-435.
WILLINGER E, TARASOV A, BLUME R, et al. Characterization of the platinum-carbon interface for electrochemical applications [J]. ACS Catalysis, 2017, 7(7): 4395-4407.
TANG H L, SU Y, ZHANG B S, et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide [J]. Science Advances, 2017, 3(10): e1700231.
TANG H L, WEI J K, LIU F, et al. Strong metal-support interactions between gold nanoparticles and nonoxides [J]. Journal of the American Chemical Society, 2016, 138(1): 56-59.
LIU X, LIU M H, LUO Y C, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. Journal of the American Chemical Society, 2012, 134(24): 10251-10258.
LUNKENBEIN T, SCHUMANN J, BEHRENS M, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions [J]. Angewandte Chemie International Edition, 2015, 54(15): 4544-4548.
SHI X Y, ZHANG W, ZHANG C, et al. Real-space observation of strong metal-support interaction: State-of-the-art and what’s the next [J]. Journal of Microscopy, 2016, 262(3): 203-215.
FIERRO GONZALEZ J C, KUBA S, HAO Y, et al. Oxide- and zeolite-supported molecular metal complexes and clusters: Physical characterization and determination of structure, bonding, and metal oxidation state [J]. The Journal of Physical Chemistry B, 2006, 110(27): 13326-13351.
DENG L, MIURA H, SHISHIDO T, et al. Elucidating strong metal-support interactions in Pt-Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes [J]. Journal of Catalysis, 2018, 365: 277-291.
NGUYEN D C, CHU C C, ANBALAGAN A K, et al. Rietveld refinement and X-ray absorption study on the bonding states of lanthanum-based perovskite-type oxides La1-xCexCoO3 [J]. Crystals, 2022, 12(1): 50.
LI Y, FRENKEL A I. Deciphering the local environment of single-atom catalysts with X-ray absorption spectroscopy [J]. Accounts of Chemical Research, 2021, 54(11): 2660-2669.
TIMOSHENKO J, ROLDAN CUENYA B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy [J]. Chemical Reviews, 2021, 121(2): 882-961.
KOTTWITZ M, LI Y, PALOMINO R M, et al. Local structure and electronic state of atomically dispersed Pt supported on nanosized CeO2 [J]. ACS Catalysis, 2019, 9(9): 8738-8748.
LEE J, RYOU Y, CHAN X J, et al. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature? The origin of improved thermal stability of Pt/CeO2 compared to CeO2 [J]. The Journal of Physical Chemistry C, 2016, 120(45): 25870-25879.
BUKHARI S N, CHONG C C, SETIABUDI H D, et al. Optimal Ni loading towards efficient CH4 production from H2 and CO2 over Ni supported onto fibrous SBA-15 [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7228-7240.
LIU N, XU M, YANG Y S, et al. Auδ--Ov-Ti3+ Interfacial site: Catalytic active center toward low-temperature water gas shift reaction [J]. ACS Catalysis, 2019, 9(4): 2707-2717.
OH H S, NONG H N, REIER T, et al. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction [J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563.
YANG X H, CHEN H M, MENG Q W, et al. Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation [J]. Catalysis Science & Technology, 2017, 7(23): 5625-5634.
FIGUEIREDO W T, PRAKASH R, VIEIRA C G, et al. New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles [J]. Applied Surface Science, 2022, 574: 151647.
CHEN S, ABDEL-MAGEED A M, GAUCKLER C, et al. Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects [J]. Journal of Catalysis, 2019, 373: 103-115.
LU Y Q, DENG H, PAN T T, et al. Interaction between noble metals (Pt, Pd, Rh, Ir, Ag) and defect-enriched TiO2 and its application in toluene and propene catalytic oxidation [J]. Applied Surface Science, 2022, 606: 154834.
ABDEL-MAGEED A M, WIESE K, PARLINSKA-WOJTAN M, et al. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts [J]. Applied Catalysis B: Environmental, 2020, 270: 118846.
GRABCHENKO M V, MAMONTOV G V, ZAIKOVSKII V I, et al. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation [J]. Applied Catalysis B: Environmental, 2020, 260: 118148.
SALVADORI E, BRUZZESE P C, GIAMELLO E, et al. Single metal atoms on oxide surfaces: Assessing the chemical bond through 17O electron paramagnetic resonance [J]. Accounts of Chemical Research, 2022, 55(24): 3706-3715.
WANG W X, LI X K, ZHANG Y, et al. Strong metal-support interactions between Ni and ZnO particles and their effect on the methanation performance of Ni/ZnO [J]. Catalysis Science & Technology, 2017, 7(19): 4413-4421.
SCHUMANN J, KRÖHNERT J, FREI E, et al. IR-spectroscopic study on the interface of Cu-based methanol synthesis catalysts: Evidence for the formation of a ZnO overlayer [J]. Topics in Catalysis, 2017, 60(19): 1735-1743.
TANG H, SU Y, GUO Y, et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts [J]. Chemical Science, 2018, 9(32): 6679-6684.
ZHANG Y, LIU J X, QIAN K, et al. Structure sensitivity of Au-TiO2 strong metal-support interactions [J]. Angewandte Chemie International Edition, 2021, 60(21): 12074-12081.
TANG H L, LIU F, WEI J K, et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation [J]. Angewandte Chemie International Edition, 2016, 55(36): 10606-10611.
CAO D, ZENG F L, ZHAO Z J, et al. Cu based catalysts for syngas production from ethanol dry reforming: Effect of oxide supports [J]. Fuel, 2018, 219: 406-416.
CHEN T Y, SU J, ZHANG Z, et al. Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts [J]. ACS Catalysis, 2018, 8(9): 8606-8617.
LIU Z Y, ZHANG F, RUI N, et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ruδ+-Ce3+ interactions for enhanced conversion [J]. ACS Catalysis, 2019, 9(4): 3349-3359.
BECK A, HUANG X, ARTIGLIA L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction [J]. Nature Communications, 2020, 11(1): 3220.
DONG J H, FU Q, LI H B, et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets [J]. Journal of the American Chemical Society, 2020, 142(40): 17167-17174.
PAKHARUKOVA V P, POTEMKIN D I, STONKUS O A, et al. Investigation of the structure and interface features of Ni/Ce1-xZrxO2 catalysts for CO and CO2 methanation [J]. The Journal of Physical Chemistry C, 2021, 125(37): 20538-20550.
ZHANG F, GUTIÉRREZ R A, LUSTEMBERG P G, et al. Metal-support interactions and C1 chemistry: Transforming Pt-CeO2 into a highly active and stable catalyst for the conversion of carbon dioxide and methane [J]. ACS Catalysis, 2021, 11(3): 1613-1623.
FU L, LIU Z X, LI X, et al. Boosting bio-lipids deoxygenation via tunable metal-support interaction in nickel/ceria-based catalysts [J]. Fuel, 2022, 322: 124027.
KENNEDY G, BAKER L R, SOMORJAI G A. Selective amplification of C==O bond hydrogenation on Pt/TiO2: Catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation [J]. Angewandte Chemie International Edition, 2014, 53(13): 3405-3408.
TROIANO J M, KUECH T R, VARTANIAN A M, et al. On electronic and charge interference in second harmonic generation responses from gold metal nanoparticles at supported lipid bilayers [J]. The Journal of Physical Chemistry C, 2016, 120(37): 20659-20667.
WANG F, BÜCHEL R, SAVITSKY A, et al. In situ EPR study of the redox properties of CuO-CeO2 catalysts for preferential CO oxidation (PROX) [J]. ACS Catalysis, 2016, 6(6): 3520-3530.
XU M, HE S, CHEN H, et al. TiO2-x-modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction [J]. ACS Catalysis, 2017, 7(11): 7600-7609.
FAN R Y, ZHANG Y G, HU Z, et al. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation [J]. Nano Research, 2021, 14(12): 4601-4609.
REN Z, YANG Y S, WANG S, et al. Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural [J]. Applied Catalysis B: Environmental, 2021, 295: 120290.
CISNEROS S, ABDEL-MAGEED A, MOSRATI J, et al. Oxygen vacancies in Ru/TiO2-drivers of low-temperature CO2 methanation assessed by multimodal operando spectroscopy [J]. iScience, 2022, 25(3): 103886.
LIU X L, WANG X H, ZHEN S Y, et al. Support stabilized PtCu single-atom alloys for propane dehydrogenation [J]. Chemical Science, 2022, 13(33): 9537-9543.
0
Views
393
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution